CIFAR10自定义网络实战
CIFAR10
MyDenseLayer
import os
import tensorflow as tf
from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics
from tensorflow import keras
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
def preprocess(x, y):
# [0, 255] --> [-1,1]
x = 2 * tf.cast(x, dtype=tf.float32) / 255. - 1
y = tf.cast(y, dtype=tf.int32)
return x, y
batch_size = 128
# x --> [32,32,3], y --> [10k, 1]
(x, y), (x_val, y_val) = datasets.cifar10.load_data()
y = tf.squeeze(y) # [10k, 1] --> [10k]
y_val = tf.squeeze(y_val)
y = tf.one_hot(y, depth=10) # [50k, 10]
y_val = tf.one_hot(y_val, depth=10) # [10k, 10]
print('datasets:', x.shape, y.shape, x_val.shape, y_val.shape, x.min(),
x.max())
train_db = tf.data.Dataset.from_tensor_slices((x, y))
train_db = train_db.map(preprocess).shuffle(10000).batch(batch_size)
test_db = tf.data.Dataset.from_tensor_slices((x_val, y_val))
test_db = test_db.map(preprocess).batch(batch_size)
sample = next(iter(train_db))
print('batch:', sample[0].shape, sample[1].shape)
class MyDense(layers.Layer):
# to replace standard layers.Dense()
def __init__(self, inp_dim, outp_dim):
super(MyDense, self).__init__()
self.kernel = self.add_variable('w', [inp_dim, outp_dim])
# self.bias = self.add_variable('b', [outp_dim])
def call(self, inputs, training=None):
x = inputs @ self.kernel
return x
class MyNetwork(keras.Model):
def __init__(self):
super(MyNetwork, self).__init__()
self.fc1 = MyDense(32 * 32 * 3, 256)
self.fc2 = MyDense(256, 128)
self.fc3 = MyDense(128, 64)
self.fc4 = MyDense(64, 32)
self.fc5 = MyDense(32, 10)
def call(self, inputs, training=None):
"""inputs: [b,32,32,32,3]"""
x = tf.reshape(inputs, [-1, 32 * 32 * 3])
# [b,32*32*32] --> [b, 256]
x = self.fc1(x)
x = tf.nn.relu(x)
# [b, 256] --> [b,128]
x = self.fc2(x)
x = tf.nn.relu(x)
# [b, 128] --> [b,64]
x = self.fc3(x)
x = tf.nn.relu(x)
# [b, 64] --> [b,32]
x = self.fc4(x)
x = tf.nn.relu(x)
# [b, 32] --> [b,10]
x = self.fc5(x)
return x
network = MyNetwork()
network.compile(optimizer=optimizers.Adam(lr=1e-3),
loss=tf.losses.CategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
network.fit(train_db, epochs=5, validation_data=test_db, validation_freq=1)
network.evaluate(test_db)
network.save_weights('weights.ckpt')
del network
print('saved to ckpt/weights.ckpt')
network = MyNetwork()
network.compile(optimizer=optimizers.Adam(lr=1e-3),
loss=tf.losses.CategoricalCrossentropy(from_logits=True),
metircs=['accuracy'])
network.fit(train_db, epochs=5, validation_data=test_db, validation_freq=1)
network.load_weights('weights.ckpt')
print('loaded weights from file.')
network.evaluate(test_db)
datasets: (50000, 32, 32, 3) (50000, 10) (10000, 32, 32, 3) (10000, 10) 0 255
batch: (128, 32, 32, 3) (128, 10)
Epoch 1/5
391/391 [==============================] - 7s 19ms/step - loss: 1.7276 - accuracy: 0.3358 - val_loss: 1.5801 - val_accuracy: 0.4427
Epoch 2/5
391/391 [==============================] - 7s 18ms/step - loss: 1.5045 - accuracy: 0.4606 - val_loss: 1.4808 - val_accuracy: 0.4812
Epoch 3/5
391/391 [==============================] - 6s 17ms/step - loss: 1.3919 - accuracy: 0.5019 - val_loss: 1.4596 - val_accuracy: 0.4921
Epoch 4/5
391/391 [==============================] - 7s 18ms/step - loss: 1.3039 - accuracy: 0.5364 - val_loss: 1.4651 - val_accuracy: 0.4950
Epoch 5/5
391/391 [==============================] - 6s 16ms/step - loss: 1.2270 - accuracy: 0.5622 - val_loss: 1.4483 - val_accuracy: 0.5030
79/79 [==============================] - 1s 11ms/step - loss: 1.4483 - accuracy: 0.5030
saved to ckpt/weights.ckpt
Epoch 1/5
391/391 [==============================] - 7s 19ms/step - loss: 1.7216 - val_loss: 1.5773
Epoch 2/5
391/391 [==============================] - 10s 26ms/step - loss: 1.5010 - val_loss: 1.5111
Epoch 3/5
391/391 [==============================] - 8s 21ms/step - loss: 1.3868 - val_loss: 1.4657
Epoch 4/5
391/391 [==============================] - 8s 20ms/step - loss: 1.3021 - val_loss: 1.4586
Epoch 5/5
391/391 [==============================] - 7s 17ms/step - loss: 1.2276 - val_loss: 1.4583
loaded weights from file.
79/79 [==============================] - 1s 12ms/step - loss: 1.4483
1.4482733222502697
CIFAR10自定义网络实战的更多相关文章
- Docker单机网络实战
前言 Docker系列文章: 此篇是Docker系列的第八篇,大家一定要按照我做的Demo都手敲一遍,印象会更加深刻的,加油! 为什么要学习Docker Docker基本概念 Docker镜像基本原理 ...
- 卷积神经网络特征图可视化(自定义网络和VGG网络)
借助Keras和Opencv实现的神经网络中间层特征图的可视化功能,方便我们研究CNN这个黑盒子里到发生了什么. 自定义网络特征可视化 代码: # coding: utf-8 from keras.m ...
- SpringBoot2.x过滤器Filter和使用Servlet3.0配置自定义Filter实战
补充:SpringBoot启动日志 1.深入SpringBoot2.x过滤器Filter和使用Servlet3.0配置自定义Filter实战(核心知识) 简介:讲解SpringBoot里面Filter ...
- [docker]docker自带的overlay网络实战
overlay网络实战 n3启动consul docker run -d -p 8500:8500 -h consul --name consul progrium/consul -server -b ...
- Docker 自定义网络
1.创建自定义网络 docker network create -d bridge --subnet 172.25.0.0/16 network_name 2.redis docker 添加到网络 d ...
- docker-compose 使用自定义网络并绑定 IP
0x00 事件 原先使用了 docker network create mynetwork 的方式创建了自定义网络,在使用 docker-compose 工具运行服务的时候,需要容器使用 mynetw ...
- Docker-Bridge Network 03 自定义网络
本节介绍自定义bridge network的自定义网络. 1.前言2.创建自定义网络2.1 创建网络2.2 指定网段创建网络3.创建容器3.1 指定网络创建容器3.2 指定IP创建容器4.通信4.1 ...
- Docker系列(28)- 自定义网络
自定义网络 网络模式 bridge:桥接docker(默认,自己创建也可以使用bridge模式) none:不配置网络 host:和宿主机共享网络 container:容器网络联通!(用的少!局限性大 ...
- 云计算和大数据时代网络技术揭秘(十二)自定义网络SDN
软件定义网络——SDN SDN是网络技术热点,即软件定义网络,OpenFlow是实现SDN思想的一个框架标准, open是指公开.开放,具体为控制平面的规则由各个通信厂家自定义变为公开的技术标准, f ...
随机推荐
- 一个简单演示样例来演示用PHP訪问表单变量
首先编写表单页面orderform.html,用post方法请求服务端脚本文件:processorder.php orderform.html: <!DOCTYPE html> <h ...
- java中类加载顺序(深入Java)
未涉及虚拟机 0.<init>与<clinit>的区别 1.类的加载过程 2.类的使用方式 3.类的加载来源 4.重载之泛型参数不同可以吗 5.参考 引子 记得上次中秋一哥们写 ...
- Codeforces 558C Amr and Chemistry
题意: n个数.每次能够选一个数 让其 *=2 或者 /=2 问至少操作多少次使得全部数相等. 思路: 对于每一个数,计算出这个数能够变成哪些数,以及变成那个数的最小步数,用两个数组保存 cnt[i] ...
- EasyBCD在windows7基础上安装Ubuntu 14.04双系统详
把下载好的ubuntu安装包放在C盘根文件夹下,利用Daemon Tools 将安装包下casper文件夹的vmlinuz.efi和initrd.lz复制到C盘根文件夹下,紧接着打开easybcd,在 ...
- Spring中的事务管理(学习笔记)
什么是事物? 事物是指逻辑上的一组操作,这组操作要么全部成功,要么全部失败. 事物的特性: 原子性.一致性.隔离性.持久性 Spring事务管理的高级接口: PlatformTransactionMa ...
- node js 安装时选择勾上path
勾上path则会自动配置环境变量,否则必须手动去添加nodejs的环境变量.
- Quartz -第一篇-入门
学习地址:https://www.imooc.com/learn/846 官网:www.quartz-scheduler.org 特点:分布式+集群 设计模式: 工厂模式 builder模式 组件模式 ...
- (C/C++)register关键字
register:这个关键字的作用是请求编译器尽可能的将变量存在CPU内部寄存器中,而不是通过内存寻址访问,以提高效率. 注意是尽可能,不是绝对.一个CPU 的寄存器也就那么几个或几十个,你要是定义了 ...
- POJ3984 迷宫问题 —— BFS
题目链接:http://poj.org/problem?id=3984 迷宫问题 Time Limit: 1000MS Memory Limit: 65536K Total Submissions ...
- jQuery制作信息提示弹出层插件【推荐】
给大家分享一款非常实用的弹窗提示窗口插件,包含多种模式.带有回执函数值的功能.1. [代码][JavaScript]代码 <script type="text/javascript& ...