【bzoj4408】[Fjoi 2016]神秘数 主席树
题目描述
一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数。例如S={1,1,1,4,13},
1 = 1
2 = 1+1
3 = 1+1+1
4 = 4
5 = 4+1
6 = 4+1+1
7 = 4+1+1+1
8无法表示为集合S的子集的和,故集合S的神秘数为8。
现给定n个正整数a[1]..a[n],m个询问,每次询问给定一个区间[l,r](l<=r),求由a[l],a[l+1],…,a[r]所构成的可重复数字集合的神秘数。
输入
第一行一个整数n,表示数字个数。
第二行n个整数,从1编号。
第三行一个整数m,表示询问个数。
以下m行,每行一对整数l,r,表示一个询问。
输出
对于每个询问,输出一行对应的答案。
样例输入
5
1 2 4 9 10
5
1 1
1 2
1 3
1 4
1 5
样例输出
2
4
8
8
8
题解
主席树的一道神题
我们先想暴力怎么做:把一段区间的数取出来,排个序,从小到大选择。如果$a1$~$a_{i-1}$能够表示$1~x$,此时加入$a_i$,如果$a_i\le x+1$,那么就可以表示$x+a_i$,否则x就是答案。
试着优化一下这个过程:设$a_{i-1}=k$,$a_i=y$,1~i-1的神秘数为ans=x+1,那么显然$ans=\sum\limits_{t=1}^{i-1}a_t$。此时如果存在k+1~ans的数就可以更新ans。更具体地,如果k+1~ans内的数的和为s,那么ans+=s;而ans为1~k的数的和+1,故ans的新值应该赋为1~ans的数的和。
说了这么多废话有什么用?我们可以发现每次ans的增量都大于等于前一次的ans,所以这个过程的时间复杂度应该为$O(\log a)$。
而事实上我们并不能把区间拿出来排序,所以需要使用数据结构,上一个主席树就好了。
时间复杂度为$O(n\log^2n)$
#include <cstdio>
#include <algorithm>
#define N 100010
using namespace std;
int v[N] , a[N] , root[N] , ls[N << 5] , rs[N << 5] , sum[N << 5] , tot;
void insert(int p , int l , int r , int x , int &y)
{
y = ++tot , sum[y] = sum[x] + a[p];
if(l == r) return;
int mid = (l + r) >> 1;
if(p <= mid) rs[y] = rs[x] , insert(p , l , mid , ls[x] , ls[y]);
else ls[y] = ls[x] , insert(p , mid + 1 , r , rs[x] , rs[y]);
}
int query(int p , int l , int r , int x , int y)
{
if(r <= p) return sum[y] - sum[x];
int mid = (l + r) >> 1;
if(p <= mid) return query(p , l , mid , ls[x] , ls[y]);
else return query(p , mid + 1 , r , rs[x] , rs[y]) + sum[ls[y]] - sum[ls[x]];
}
int main()
{
int n , m , i , x , y , ans , tmp;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &a[i]) , v[i] = a[i];
sort(a + 1 , a + n + 1);
for(i = 1 ; i <= n ; i ++ ) v[i] = lower_bound(a + 1 , a + n + 1 , v[i]) - a;
for(i = 1 ; i <= n ; i ++ ) insert(v[i] , 1 , n , root[i - 1] , root[i]);
a[n + 1] = 1 << 30;
scanf("%d" , &m);
while(m -- )
{
scanf("%d%d" , &x , &y) , ans = 1;
while((tmp = query(upper_bound(a + 1 , a + n + 2 , ans) - a - 1 , 1 , n , root[x - 1] , root[y])) >= ans)
ans = tmp + 1;
printf("%d\n" , ans);
}
return 0;
}
【bzoj4408】[Fjoi 2016]神秘数 主席树的更多相关文章
- BZOJ4408&4299[Fjoi 2016]神秘数——主席树
题目描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 1 2 = 1+1 3 = 1+1+1 4 = 4 5 = 4+1 6 = ...
- BZOJ 4408: [Fjoi 2016]神秘数 [主席树]
传送门 题意: 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},8无法表示为集合S的子集的和,故集合S的神秘数为8.现给定n个正整数a[1]. ...
- BZOJ 4408: [Fjoi 2016]神秘数 主席树 + 神题
Code: #include<bits/stdc++.h> #define lson ls[x] #define mid ((l+r)>>1) #define rson rs[ ...
- [BZOJ4408][Fjoi 2016]神秘数
[BZOJ4408][Fjoi 2016]神秘数 试题描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1+13 = 1 ...
- 【BZOJ4408】[Fjoi 2016]神秘数 主席树神题
[BZOJ4408][Fjoi 2016]神秘数 Description 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1 ...
- BZOJ4408: [Fjoi 2016]神秘数【主席树好题】
Description 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13}, 1 = 1 2 = 1+1 3 = 1+1+1 4 = 4 5 = ...
- BZOJ4408 [Fjoi 2016]神秘数 【主席树】
题目链接 BZOJ4408 题解 假如我们已经求出一个集合所能凑出连续数的最大区间\([1,max]\),那么此时答案为\(max + 1\) 那么我们此时加入一个数\(x\),假若\(x > ...
- bzoj4408 [Fjoi 2016]神秘数 & bzoj4299 Codechef FRBSUM 主席树+二分+贪心
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4299 https://lydsy.com/JudgeOnline/problem.php?id ...
- Bzoj 4408: [Fjoi 2016]神秘数 可持久化线段树,神题
4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 177 Solved: 128[Submit][Status ...
随机推荐
- 用YII实现多重查询(基于tag)
场景: 有一个饭店表 restaurant,存放所有饭店记录.我需要一个功能,将饭店按照不同的条件进行多重查询.就象这样: 氛围:浪漫 / 商务会谈 / 茅草屋 菜系:川菜 / 鲁菜 / 家常菜. ...
- python super详解
一.super() 的入门使用 - 在类的继承中,如果重定义某个方法,该方法会覆盖父类的同名方法,但有时,我们希望能同时实现父类的功能, 这时,我们就需要调用父类的方法了,可通过使用 super 来实 ...
- leecode 旋转数组
描述 给定一个数组,将数组中的元素向右移动 k 个位置,其中 k 是非负数. 示例 1: 输入: [1,2,3,4,5,6,7] 和 k = 3 输出: [5,6,7,1,2,3,4] 解释: 向右旋 ...
- make 与makefile(会不会写 makefile,从一个侧面说明了一个人是否具备完成大型工程的能力。)
跟我一起写 Makefile /**/ 陈皓 (CSDN) 概述 —— 什么是makefile?或许很多Winodws的程序员都不知道这个东西,因为那些Windows的IDE都为你做了这个工作,但我觉 ...
- UVA - 1279 Asteroid Rangers (动点的最小生成树)
题意,有n个匀速动点,求最小生成树的改变次数. 一句话总结:动态问题的一般做法是先求出一个静态的解,然后求出解发生改变的事件,事件按照时间排序,依次处理. 先求出最开始的最小生成树(MST),当MST ...
- Objective-C相关Category的收集(更新)
Categories是给你得不到源码的classes增加功能的一种方法.这个页面收集一些相关的Category,并且持续更新,你可以订阅关注.作者是Fille ?str?m,是@ IMGNRY的联合创 ...
- C04 模块化开发
目录 模块化开发概述 函数概述 如何使用函数 字符串处理函数 模块化开发特点 模块化开发概述 概述 C语言是面向过程的语言,意味着编写C语言程序的时候,我们要像计算机一样思考如何设计程序. 模块化开发 ...
- webuploader项目中多文件上传实例
<!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...
- Noip2018 考前准备
目录 基础算法 二分 模拟(未补) 高精(未学习) 搜索(未补) 排序 图论 树的直径 树的重心 最短路算法 Spfa Dijkstra Floyd 最小生成树 kruskal 数论 线性筛 线性筛素 ...
- 初涉KMP算法
久仰字符串系列理论 KMP 讲解(引用自bzoj3670动物园) 某天,园长给动物们讲解KMP算法. 园长:“对于一个字符串S,它的长度为L.我们可以在O(L)的时间内,求出一个名为next的数组.有 ...