Description

脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j <= m),每个装备需要花费 ci,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着怎样才能花尽量少的钱买尽量多的装备。对于脸哥来说,如果一件装备的属性能用购买的其他装备组合出(也就是说脸哥可以利用手上的这些装备组合出这件装备的效果),那么这件装备就没有买的必要了。严格的定义是,如果脸哥买了 zi1,.....zip这 p 件装备,那么对于任意待决定的 zh,不存在 b1,....,bp 使得 b1zi1 + ... + bpzip = zh(b 是实数),那么脸哥就会买 zh,否则 zh 对脸哥就是无用的了,自然不必购买。举个例子,z1 =(1; 2; 3);z2 =(3; 4; 5);zh =(2; 3; 4),b1 =1/2,b2 =1/2,就有 b1z1 + b2z2 = zh,那么如果脸哥买了 z1 和 z2 就不会再买 zh 了。脸哥想要在买下最多数量的装备的情况下花最少的钱,你能帮他算一下吗?

Input

第一行两个数 n;m。接下来 n 行,每行 m 个数,其中第 i 行描述装备 i 的各项属性值。接下来一行 n 个数,
其中 ci 表示购买第 i 件装备的花费。

Output

一行两个数,第一个数表示能够购买的最多装备数量,第二个数表示在购买最多数量的装备的情况下的最小花费
 

题解:

这乍一看,似乎没有什么规律,但是,仔细一想,这题跟线性基有点像。

普通的异或线性基是将十进制数转为二进制,将 01 串作为向量,加入线性基,这道题将一个十进制的向量插入线性基。

我们可以用高斯消元消去最高位替代异或,如下:

 bool insert(Vector x){
for(int i=m;i>=;i--){
if(fabs(x.v[i])<eps)continue;
if(a[i].empty()){a[i]=x;return true;}
double k=x.v[i]/a[i].v[i];
for(int j=;j<=m;j++)x.v[j]-=a[i].v[j]*k;
if(x.empty())return false;
}
}

这同样满足线性基的性质,(感性理解)

COMPLETE  CODE:

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std; #define eps 1e-5
int n,m,x,sum,ans;
struct Vector{
double v[];
int c;
bool operator<(const Vector &b)const{
return c<b.c;
}
bool empty(){
for(int i=;i<=m;i++)
if(fabs(v[i])>=eps)return false;
return true;
}
}a[];
struct LB{
Vector a[];
bool insert(Vector x){
for(int i=m;i>=;i--){
if(fabs(x.v[i])<eps)continue;
if(a[i].empty()){a[i]=x;return true;}
double k=x.v[i]/a[i].v[i];
for(int j=;j<=m;j++)x.v[j]-=a[i].v[j]*k;
if(x.empty())return false;
}
}
}lb; int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)scanf("%d",&x),a[i].v[j]=x;
for(int i=;i<=n;i++)scanf("%d",&a[i].c);
sort(a+,a+n+);
for(int i=;i<=n;i++)
if(lb.insert(a[i]))sum++,ans+=a[i].c;
printf("%d %d",sum,ans);
}

注意!! 这题卡精度!!

【bzoj4004】【JLOI2015】装备购买 (线性基+高斯消元)的更多相关文章

  1. bzoj4004 [JLOI2015]装备购买——线性基+贪心

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4004 今天讲课讲到的题,据说满足拟阵的性质,所以贪心是正确的: 总之就贪心,按价格从小到大排 ...

  2. [bzoj 2844]线性基+高斯消元

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2844 又用到线性基+高斯消元的套路题了,因为经过高斯消元以后的线性基有非常好的序关系,所以 ...

  3. 洛谷P3265 [JLOI2015]装备购买(线性基+高斯消元)

    传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 不难看出题目讲的就是线性基 这种最小化权值的问题一般都是贪心的,就是按价值从低到高考虑每一个是否能选 据说贪心的证明得用拟阵我不会 据说这题是实数意 ...

  4. Codeforces.472F.Design Tutorial: Change the Goal(构造 线性基 高斯消元)

    题目链接 \(Description\) 给定两个长为\(n\)的数组\(x_i,y_i\).每次你可以选定\(i,j\),令\(x_i=x_i\ \mathbb{xor}\ x_j\)(\(i,j\ ...

  5. 【题解】 bzoj1923: [Sdoi2010]外星千足虫 (线性基/高斯消元)

    bzoj1923,戳我戳我 Solution: 这个高斯消元/线性基很好看出来,主要是判断在第K 次统计结束后就可以确定唯一解的地方和\(bitset\)的骚操作 (我用的线性基)判断位置,我们可以每 ...

  6. [hdu 3949]线性基+高斯消元

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3949 一开始给做出来的线性基wa了很久,最后加了一步高斯消元就过了. 之所以可以这样做,证明如下. 首 ...

  7. BZOJ 4004 [JLOI2015]装备购买 | 线性基

    题目链接 Luogu P3265 题解 非常正常的线性基! 但是我不会线性基-- (吐槽:#define double long double 才过--) #include <cstdio> ...

  8. BZOJ 4004 [JLOI2015]装备购买 ——线性基

    [题目分析] 题目很简单,就是要维护一个实数域上的线性基. 仿照异或空间的线性基的方法,排序之后每次加入一个数即可. 卡精度,开long double 和 1e-6就轻松水过了. [代码] #incl ...

  9. HDU 3949 XOR [线性基|高斯消元]

    目录 题目链接 题解 代码 题目链接 HDU 3949 XOR 题解 hdu3949XOR 搞死消元找到一组线性无关组 消出对角矩阵后 对于k二进制拆分 对于每列只有有一个1的,显然可以用k的二进制数 ...

随机推荐

  1. UVA 11324 The Largest Clique (强连通分量,dp)

    给出一个有向图,求一个最大的结点集合,任意两个点u,v.u可到达v或v可到达u. 一个强连通分量肯定一起选的.而且只能在一条路径上. 所以先找出所有scc,然后缩点找一条最大权的路径,按拓扑序跑DAG ...

  2. java 中设计模式

    1. 单例模式(一个类只有一个实例) package ch.test.notes.designmodel; /** * Description: 单例模式 (饿汉模式 线程安全的) * * @auth ...

  3. GloVe:另一种Word Embedding方法

    若想深层地理解GloVe和本文,最好了解SVD, word2vec(skip-gram为主)的相关知识.若仅寻求一种新的word embedding方法,可以不必了解以上前置知识. 一言以蔽之,Glo ...

  4. java在线聊天项目0.6版 解决客户端关闭后异常问题 dis.readUTF()循环读取已关闭的socket

    服务端对try catch finally重新进行了定义,当发生异常,主动提示,或关闭出现异常的socket 服务器端代码修改如下: package com.swift; import java.io ...

  5. LeetCode 最长连续递增序列

    给定一个未经排序的整数数组,找到最长且连续的的递增序列. 示例 1: 输入: [1,3,5,4,7] 输出: 3 解释: 最长连续递增序列是 [1,3,5], 长度为3. 尽管 [1,3,5,7] 也 ...

  6. 日志平台-ELK6.4

    一.环境 linux-node1 192.168.127.201 linux-node2 192.168.127.202 centos7.3 elasticsearch6.4 logstash6.4 ...

  7. Ajax跨域问题---jsonp

    跨域:跨域名  一个域名下的文件去请求了和他不一样的域名下资源文件,那么就会产生跨域请求 解决跨域问题办法: 1.将要访问的外部资源存到本域名下的一个php文件 2.用flash方式 3.JSONP: ...

  8. python--FTP 上传视频示例

    # 服务端 import json import socket import struct server = socket.socket() server.bind(('127.0.0.1',8001 ...

  9. 面试Python工程师,这几道编码题有必要背背,Python面试题No8

    第1题:列表[1,2,3,4,5],请使用map()函数输出[1,4,9,16,25],并使用列表推导式提取出大于10的数,最终输出[16,25]. map是python高阶用法,字面意义是映射,它的 ...

  10. [转]ARM平台下独占访问指令LDREX和STREX

    参考:ARM平台下独占访问指令LDREX和STREX的原理与使用详解 全文转载如下: 为了实现线程间同步,一般都要在执行关键代码段之前加互斥(Mutex)锁,且在执行完关键代码段之后解锁.为了实现所谓 ...