https://www.zybuluo.com/ysner/note/1329304

题面

有一张\(n\)点\(m\)边的、不一定联通的无向图。

如果选了一条边,就不能选其两个端点。

现在同时选点和边,那么最多能够选的点边数量和为多少。

同时,回答使点边数最大的方案数。

  • \(n\leq10^5,m\leq3*10^5\)

解析

设答案为\(ans\),方案数为\(tot\)。

讨论一下联通块的形态:

  • \(m=n-1\):\(ans=n,tot=1\)
  • \(m=n\):\(ans=m\),环中\(tot=2\),树的部分\(tot\)值可以通过\(dp\)求出
  • \(m>n\):\(ans=m\),强连通分量\(tot=1\),树的部分\(tot\)值可以通过\(dp\)求出

树的部分的\(dp\):

设\(dp[i][0/1]\)表示统计到\(i\)号点,选不选该点的方案数。

然后从儿子转移,讨论一下就行。

综上,其实把强联通分量缩点后直接树形\(DP\)就行了。

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define ll long long
#define re register
#define il inline
#define fp(i,a,b) for(re int i=a;i<=b;++i)
#define fq(i,a,b) for(re int i=a;i>=b;--i)
using namespace std;
const int N=5e5+100,mod=998244353;
int n,m,h[N],cnt=1,ans,dfn[N],low[N],sta[N],top,tot,sz[N],bl[N],scc,Esz[N],f[2][N],g[2][N];
bool vis[N];
struct dat{int u,v;}a[N<<1];
struct Edge{int to,nxt;}e[N<<1];
il void add(re int u,re int v)
{
e[++cnt]=(Edge){v,h[u]};h[u]=cnt;
e[++cnt]=(Edge){u,h[v]};h[v]=cnt;
}
il ll gi()
{
re ll x=0,t=1;
re char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') t=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*t;
}
il void Tarjan(re int u,re int las)
{
dfn[u]=low[u]=++tot;sta[++top]=u;vis[u]=1;
re int v;
for(re int i=h[u];i+1;i=e[i].nxt)
if((i^1)^las)
{
re int v=e[i].to;
if(!dfn[v]) Tarjan(v,i),low[u]=min(low[u],low[v]);
else if(vis[v]) low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u])
{
++scc;
do{v=sta[top--];vis[v]=0;++sz[scc];bl[v]=scc;}while(u^v);
}
}
il void dfs(re int u)
{
f[0][u]=sz[u];f[1][u]=Esz[u];g[0][u]=g[1][u]=1;vis[u]=1;
for(re int i=h[u];i+1;i=e[i].nxt)
{
re int v=e[i].to;
if(vis[v]) continue;
dfs(v);
if(f[0][v]>f[1][v]) f[0][u]+=f[0][v],g[0][u]=1ll*g[0][u]*g[0][v]%mod;
if(f[0][v]==f[1][v]) f[0][u]+=f[0][v],g[0][u]=1ll*g[0][u]*(g[0][v]+g[1][v])%mod;
if(f[0][v]<f[1][v]) f[0][u]+=f[1][v],g[0][u]=1ll*g[0][u]*g[1][v]%mod;
if(f[0][v]>f[1][v]+1) f[1][u]+=f[0][v],g[1][u]=1ll*g[1][u]*g[0][v]%mod;
if(f[0][v]==f[1][v]+1) f[1][u]+=f[0][v],g[1][u]=1ll*g[1][u]*(g[0][v]+g[1][v])%mod;
if(f[0][v]<f[1][v]+1) f[1][u]+=f[1][v]+1,g[1][u]=1ll*g[1][u]*g[1][v]%mod;
}
}
int main()
{
memset(h,-1,sizeof(h));
n=gi();m=gi();
fp(i,1,m) a[i].u=gi(),a[i].v=gi(),add(a[i].u,a[i].v);
fp(i,1,n) if(!dfn[i]) Tarjan(i,0);
memset(h,-1,sizeof(h));cnt=0;
fp(i,1,m)
{
re int u=a[i].u,v=a[i].v;
if(bl[u]^bl[v]) add(bl[u],bl[v]);
else ++Esz[bl[u]];
}
n=scc;tot=1;
fp(i,1,n)
if(!vis[i])
{
dfs(i);
if(f[0][i]<f[1][i]) ans+=f[1][i],tot=1ll*tot*g[1][i]%mod;
if(f[0][i]==f[1][i]) ans+=f[1][i],tot=1ll*tot*(g[0][i]+g[1][i])%mod;
if(f[0][i]>f[1][i]) ans+=f[0][i],tot=1ll*tot*g[0][i]%mod;
}
printf("%d\n%d\n",ans,tot);
return 0;
}

[noip模拟赛]小U的女装的更多相关文章

  1. noip模拟赛 小Y的问题

    [问题描述]有个孩子叫小 Y,一天,小 Y 拿到了一个包含 n 个点和 n-1 条边的无向连通图, 图中的点用 1~n 的整数编号.小 Y 突发奇想,想要数出图中有多少个“Y 字形”.一个“Y 字形” ...

  2. NOIP模拟赛20161022

    NOIP模拟赛2016-10-22 题目名 东风谷早苗 西行寺幽幽子 琪露诺 上白泽慧音 源文件 robot.cpp/c/pas spring.cpp/c/pas iceroad.cpp/c/pas ...

  3. NOIP模拟赛 by hzwer

    2015年10月04日NOIP模拟赛 by hzwer    (这是小奇=> 小奇挖矿2(mining) [题目背景] 小奇飞船的钻头开启了无限耐久+精准采集模式!这次它要将原矿运到泛光之源的矿 ...

  4. CH Round #55 - Streaming #6 (NOIP模拟赛day2)

    A.九九归一 题目:http://ch.ezoj.tk/contest/CH%20Round%20%2355%20-%20Streaming%20%236%20(NOIP模拟赛day2)/九九归一 题 ...

  5. CH Round #54 - Streaming #5 (NOIP模拟赛Day1)

    A.珠 题目:http://ch.ezoj.tk/contest/CH%20Round%20%2354%20-%20Streaming%20%235%20(NOIP模拟赛Day1)/珠 题解:sb题, ...

  6. 10.16 NOIP模拟赛

    目录 2018.10.16 NOIP模拟赛 A 购物shop B 期望exp(DP 期望 按位计算) C 魔法迷宫maze(状压 暴力) 考试代码 C 2018.10.16 NOIP模拟赛 时间:2h ...

  7. Nescafe #29 NOIP模拟赛

    Nescafe #29 NOIP模拟赛 不知道这种题发出来算不算侵权...毕竟有的题在$bz$上是权限题,但是在$vijos$似乎又有原题...如果这算是侵权的话请联系我,我会尽快删除,谢谢~ 今天开 ...

  8. NOI.AC NOIP模拟赛 第六场 游记

    NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...

  9. NOI.AC NOIP模拟赛 第一场 补记

    NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...

随机推荐

  1. 两个很实用很方便的函数核心及用法{(lower_bound)+(max_element))~~

    (1)            关于 lower_bound(a,a+n,x)-a的用法:                                                求x在数组a中的 ...

  2. poj 3417 Network 题解

    题意: 先给出一棵树,然后再给出m条边,把这m条边连上,然后剪掉两条边,一条是原边,一条是新边,问有多少种方案能使图不连通. 思路: 从原边的角度看 1.树加边,一定成环,加一条(u,v)边就有u-& ...

  3. 【转载】js中对象的使用

    原文链接:http://www.jb51.net/article/90256.htm[侵删] 简单记录javascript中对象的使用 一.创建对象 //创建一个空对象 var o={}; //创建一 ...

  4. UVA 861 组合数学 递推

    题目链接 https://vjudge.net/problem/UVA-861 题意: 一个国际象棋棋盘,‘象’会攻击自己所在位置对角线上的棋子.问n*n的棋盘 摆放k个互相不攻击的 '象' 有多少种 ...

  5. POJ 1015 Jury Compromise【DP】

    罗大神说这题很简单,,,,然而我着实写的很难过... 题目链接: http://acm.hust.edu.cn/vjudge/contest/view.action?cid=110495#proble ...

  6. Anagrams(hash表)

    Given an array of strings, return all groups of strings that are anagrams. Note: All inputs will be ...

  7. 【转】C++函数的重载、覆盖和隐藏区别

    网上看到的关于C++函数的重载.覆盖和隐藏区别的回答,如下(其内容来源于C++面试宝典中一道题目): a.成员函数被重载的特征:(1)相同的范围(在同一个类中):(2)函数名字相同:(3)参数不同:( ...

  8. hdoj 3351 Seinfeld 【栈的简单应用】

    Seinfeld Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  9. Linux 命令 sudo

    sudo 这个命令. 是为了 让 普通用户 ,也能够以root的身份来运行 操作, 而这些普通用户 又不须要知道root的password. 在 sudo 运行命令的时候. 仅仅须要 输入自己的pas ...

  10. CASE函数 sql server——分组查询(方法和思想) ref和out 一般处理程序结合反射技术统一执行客户端请求 遍历查询结果集,update数据 HBuilder设置APP状态栏

    CASE函数   作用: 可以将查询结果集的某一列的字段值进行替换 它可以生成一个新列 相当于switch...case和 if..else 使用语法: case 表达式/字段 when 值 then ...