https://www.zybuluo.com/ysner/note/1329304

题面

有一张\(n\)点\(m\)边的、不一定联通的无向图。

如果选了一条边,就不能选其两个端点。

现在同时选点和边,那么最多能够选的点边数量和为多少。

同时,回答使点边数最大的方案数。

  • \(n\leq10^5,m\leq3*10^5\)

解析

设答案为\(ans\),方案数为\(tot\)。

讨论一下联通块的形态:

  • \(m=n-1\):\(ans=n,tot=1\)
  • \(m=n\):\(ans=m\),环中\(tot=2\),树的部分\(tot\)值可以通过\(dp\)求出
  • \(m>n\):\(ans=m\),强连通分量\(tot=1\),树的部分\(tot\)值可以通过\(dp\)求出

树的部分的\(dp\):

设\(dp[i][0/1]\)表示统计到\(i\)号点,选不选该点的方案数。

然后从儿子转移,讨论一下就行。

综上,其实把强联通分量缩点后直接树形\(DP\)就行了。

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define ll long long
#define re register
#define il inline
#define fp(i,a,b) for(re int i=a;i<=b;++i)
#define fq(i,a,b) for(re int i=a;i>=b;--i)
using namespace std;
const int N=5e5+100,mod=998244353;
int n,m,h[N],cnt=1,ans,dfn[N],low[N],sta[N],top,tot,sz[N],bl[N],scc,Esz[N],f[2][N],g[2][N];
bool vis[N];
struct dat{int u,v;}a[N<<1];
struct Edge{int to,nxt;}e[N<<1];
il void add(re int u,re int v)
{
e[++cnt]=(Edge){v,h[u]};h[u]=cnt;
e[++cnt]=(Edge){u,h[v]};h[v]=cnt;
}
il ll gi()
{
re ll x=0,t=1;
re char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') t=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*t;
}
il void Tarjan(re int u,re int las)
{
dfn[u]=low[u]=++tot;sta[++top]=u;vis[u]=1;
re int v;
for(re int i=h[u];i+1;i=e[i].nxt)
if((i^1)^las)
{
re int v=e[i].to;
if(!dfn[v]) Tarjan(v,i),low[u]=min(low[u],low[v]);
else if(vis[v]) low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u])
{
++scc;
do{v=sta[top--];vis[v]=0;++sz[scc];bl[v]=scc;}while(u^v);
}
}
il void dfs(re int u)
{
f[0][u]=sz[u];f[1][u]=Esz[u];g[0][u]=g[1][u]=1;vis[u]=1;
for(re int i=h[u];i+1;i=e[i].nxt)
{
re int v=e[i].to;
if(vis[v]) continue;
dfs(v);
if(f[0][v]>f[1][v]) f[0][u]+=f[0][v],g[0][u]=1ll*g[0][u]*g[0][v]%mod;
if(f[0][v]==f[1][v]) f[0][u]+=f[0][v],g[0][u]=1ll*g[0][u]*(g[0][v]+g[1][v])%mod;
if(f[0][v]<f[1][v]) f[0][u]+=f[1][v],g[0][u]=1ll*g[0][u]*g[1][v]%mod;
if(f[0][v]>f[1][v]+1) f[1][u]+=f[0][v],g[1][u]=1ll*g[1][u]*g[0][v]%mod;
if(f[0][v]==f[1][v]+1) f[1][u]+=f[0][v],g[1][u]=1ll*g[1][u]*(g[0][v]+g[1][v])%mod;
if(f[0][v]<f[1][v]+1) f[1][u]+=f[1][v]+1,g[1][u]=1ll*g[1][u]*g[1][v]%mod;
}
}
int main()
{
memset(h,-1,sizeof(h));
n=gi();m=gi();
fp(i,1,m) a[i].u=gi(),a[i].v=gi(),add(a[i].u,a[i].v);
fp(i,1,n) if(!dfn[i]) Tarjan(i,0);
memset(h,-1,sizeof(h));cnt=0;
fp(i,1,m)
{
re int u=a[i].u,v=a[i].v;
if(bl[u]^bl[v]) add(bl[u],bl[v]);
else ++Esz[bl[u]];
}
n=scc;tot=1;
fp(i,1,n)
if(!vis[i])
{
dfs(i);
if(f[0][i]<f[1][i]) ans+=f[1][i],tot=1ll*tot*g[1][i]%mod;
if(f[0][i]==f[1][i]) ans+=f[1][i],tot=1ll*tot*(g[0][i]+g[1][i])%mod;
if(f[0][i]>f[1][i]) ans+=f[0][i],tot=1ll*tot*g[0][i]%mod;
}
printf("%d\n%d\n",ans,tot);
return 0;
}

[noip模拟赛]小U的女装的更多相关文章

  1. noip模拟赛 小Y的问题

    [问题描述]有个孩子叫小 Y,一天,小 Y 拿到了一个包含 n 个点和 n-1 条边的无向连通图, 图中的点用 1~n 的整数编号.小 Y 突发奇想,想要数出图中有多少个“Y 字形”.一个“Y 字形” ...

  2. NOIP模拟赛20161022

    NOIP模拟赛2016-10-22 题目名 东风谷早苗 西行寺幽幽子 琪露诺 上白泽慧音 源文件 robot.cpp/c/pas spring.cpp/c/pas iceroad.cpp/c/pas ...

  3. NOIP模拟赛 by hzwer

    2015年10月04日NOIP模拟赛 by hzwer    (这是小奇=> 小奇挖矿2(mining) [题目背景] 小奇飞船的钻头开启了无限耐久+精准采集模式!这次它要将原矿运到泛光之源的矿 ...

  4. CH Round #55 - Streaming #6 (NOIP模拟赛day2)

    A.九九归一 题目:http://ch.ezoj.tk/contest/CH%20Round%20%2355%20-%20Streaming%20%236%20(NOIP模拟赛day2)/九九归一 题 ...

  5. CH Round #54 - Streaming #5 (NOIP模拟赛Day1)

    A.珠 题目:http://ch.ezoj.tk/contest/CH%20Round%20%2354%20-%20Streaming%20%235%20(NOIP模拟赛Day1)/珠 题解:sb题, ...

  6. 10.16 NOIP模拟赛

    目录 2018.10.16 NOIP模拟赛 A 购物shop B 期望exp(DP 期望 按位计算) C 魔法迷宫maze(状压 暴力) 考试代码 C 2018.10.16 NOIP模拟赛 时间:2h ...

  7. Nescafe #29 NOIP模拟赛

    Nescafe #29 NOIP模拟赛 不知道这种题发出来算不算侵权...毕竟有的题在$bz$上是权限题,但是在$vijos$似乎又有原题...如果这算是侵权的话请联系我,我会尽快删除,谢谢~ 今天开 ...

  8. NOI.AC NOIP模拟赛 第六场 游记

    NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...

  9. NOI.AC NOIP模拟赛 第一场 补记

    NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...

随机推荐

  1. SeLion数据驱动中遇到的问题,以及解决方案

    问题描述: 使用selion框架数据驱动时,总是test ignored. 解决方案: 把这个dataprovider方法拿出来做单元测试.有详细报错. 问题1:使用wps保存,poi包只能解析xls ...

  2. vscode安装插件

    十分简单,知道名字叫啥后,直接搜索,安装,就完了,还可以查看自己已经安装了哪些插件. step1 如图.png step2 image.png step 3 去网上查找想要安装的插件的名字 step ...

  3. 普通平衡树(bzoj 3224)

    Description 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作:1. 插入x数2. 删除x数(若有多个相同的数,因只删除一个)3. 查询x数的排名(若有多个相同的数 ...

  4. Android操作系统架构

    Android操作系统架构   Android操作系统整体应用架构 Android系统架构和一些普遍的操作系统差不多,都是采用了分层的架构,从他们之间的架构图看,Android系统架构分为四个层,从高 ...

  5. Intersection of Two Linked Lists(链表)

    Write a program to find the node at which the intersection of two singly linked lists begins. For ex ...

  6. java面向对象day01

    前言: 1.首先我们要明白:万物皆对象.现实中存在的事物都是对象.而面向对象技术就是对客观事物进行抽象.2.而java语言是纯面向对象的的语言,它具有描述对象及其相互之间关系的语言成分.3.定义类和建 ...

  7. 使用Spring Data Redis操作Redis(集群版)

    说明:请注意Spring Data Redis的版本以及Spring的版本!最新版本的Spring Data Redis已经去除Jedis的依赖包,需要自行引入,这个是个坑点.并且会与一些低版本的Sp ...

  8. jquery显示和隐藏元素

    1.$('#id').show()/$('#id').hide()/$('#id').toggle() 2.$('#id').css('display','none')/$('#id').css('d ...

  9. 【nginx】【转】Nginx核心进程模型

    一.Nginx整体架构 正常执行中的nginx会有多个进程,最基本的有master process(监控进程,也叫做主进程)和woker process(工作进程),还可能有cache相关进程.   ...

  10. 自己定义控件 播放GIF动画

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/ ...