HDU 2242 连通分量缩点+树形dp
题目大意是:
所有点在一个连通图上,希望去掉一条边得到两个连通图,且两个图上所有点的权值的差最小,如果没有割边,则输出impossible
这道题需要先利用tarjan算法将在同一连通分量中的点缩成一个点后,重新构建一幅图,然后利用新建的图进行树形dp解决问题
这道题目需要注意的是可能存在重边,那么子节点回到父节点有两条边及以上的话,就需要对子节点经过父节点的边进行low值更新
tarjan算法学习的网站个人感觉还不错https://www.byvoid.com/blog/scc-tarjan/
/*
找割边是否存在
*/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <stack>
using namespace std; typedef long long ll;
const int N = ;
const int INF = ; int first[N] , k , k_scc , val[N] , val_scc[N] , sum[N] , all ;
int scc[N] , num_of_scc , dfs_clock , dfn[N] , low[N];
stack<int> s; struct Edge{
int x , y , next ;
bool flag;
}e[N<<] , e_scc[N<<]; int my_abs(int x)
{
return x>=?x:-x;
} void add_edge(int x , int y)
{
e[k].x = x , e[k].y = y , e[k].next = first[x];
first[x] = k++;
} void add_edge_scc(int x , int y)
{
e_scc[k_scc].x = x , e_scc[k_scc].y = y , e_scc[k_scc].next = first[x] , e_scc[k_scc].flag = false;
first[x] = k_scc++;
} void tarjan(int u , int fa)
{
dfn[u] = low[u] = ++dfs_clock;
s.push(u);
int flag = ; //用来解决重边情况
for(int i=first[u] ; i!=- ; i=e[i].next){
int v = e[i].y;
/*
因为第一次遇到父节点的边,表示是一开始下来的边,这个是不允许访问的,
但是如果遇到2次及以上,说明u v之间不止一条边,访问到第二次之后的边是允许
low[u]通过这个重边得到dfn[v]比较下的较小值进行更新
*/
if(v == fa && flag){
flag = ;
continue;
}
if(!dfn[v]){
tarjan(v,u);
low[u] = min(low[u] , low[v]);
}
else if(!scc[v])
low[u] = min(low[u] , dfn[v]);
}
if(low[u] == dfn[u]){
num_of_scc++;
while(true){
int x = s.top();
s.pop();
scc[x] = num_of_scc;
val_scc[num_of_scc] += val[x];//得到新构建图上的点的权值
if(x == u) break;
}
}
} void dfs(int u , int fa)
{
sum[u] = val_scc[u];
for(int i=first[u] ; i!=- ; i=e_scc[i].next){
int v = e_scc[i].y;
if(v == fa) continue;
e_scc[i].flag = true;
dfs(v , u);
sum[u]+=sum[v];
}
} int main()
{
// freopen("a.in" , "r" , stdin);
int n , m , x , y;
while(scanf("%d%d" , &n , &m) == ){
memset(first , - , sizeof(first));
k= , all = ;
for(int i= ; i<n ; i++)
{
scanf("%d" , val+i);
all += val[i];
} for(int i= ; i<m ; i++){
scanf("%d%d" , &x , &y);
add_edge(x , y);
add_edge(y , x);
} //强连通分量缩点
dfs_clock = , num_of_scc = ;
memset(dfn , ,sizeof(dfn));
memset(scc , , sizeof(scc));
memset(val_scc , , sizeof(val_scc));
tarjan( , -); if(num_of_scc == ){
puts("impossible");
continue;
} //重新构建一个以连通分量缩点后的树形图
memset(first , - , sizeof(first));
k_scc = ;
for(int i= ; i<k ; i++){
if(scc[e[i].x] == scc[e[i].y]) continue;
add_edge_scc(scc[e[i].x] , scc[e[i].y]);
}
dfs( , -); int minn = INF;
for(int i= ; i<k_scc ; i++){
if(!e_scc[i].flag) continue;
minn = min(minn , my_abs(all - sum[e_scc[i].y] - sum[e_scc[i].y]) );
}
printf("%d\n" , minn);
}
return ;
}
HDU 2242 连通分量缩点+树形dp的更多相关文章
- hdu 2242双联通分量+树形dp
/*先求出双联通缩点,然后进行树形dp*/ #include<stdio.h> #include<string.h> #include<math.h> #defin ...
- hdu 4514 并查集+树形dp
湫湫系列故事——设计风景线 Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Tot ...
- 洛谷 P2515 [HAOI2010]软件安装(缩点+树形dp)
题面 luogu 题解 缩点+树形dp 依赖关系可以看作有向边 因为有环,先缩点 缩点后,有可能图不联通. 我们可以新建一个结点连接每个联通块. 然后就是树形dp了 Code #include< ...
- 训练指南 UVA - 11324(双连通分量 + 缩点+ 基础DP)
layout: post title: 训练指南 UVA - 11324(双连通分量 + 缩点+ 基础DP) author: "luowentaoaa" catalog: true ...
- [HDU 5293]Tree chain problem(树形dp+树链剖分)
[HDU 5293]Tree chain problem(树形dp+树链剖分) 题面 在一棵树中,给出若干条链和链的权值,求选取不相交的链使得权值和最大. 分析 考虑树形dp,dp[x]表示以x为子树 ...
- HDU 5293 Tree chain problem 树形dp+dfs序+树状数组+LCA
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 题意: 给你一些链,每条链都有自己的价值,求不相交不重合的链能够组成的最大价值. 题解: 树形 ...
- hdu 4003 Find Metal Mineral 树形DP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4003 Humans have discovered a kind of new metal miner ...
- HDU 5758 Explorer Bo(树形DP)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5758 [题目大意] 给出一棵树,每条路长度为1,允许从一个节点传送到任意一个节点,现在要求在传送次 ...
- 2017 Multi-University Training Contest - Team 1 1003&&HDU 6035 Colorful Tree【树形dp】
Colorful Tree Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)T ...
随机推荐
- Vue学习-Element框架
今天学了一个基于Vue2.0的桌面端组件库Element,号称是全世界最流行的Vue UI框架.感觉学会了之后就变身大牛了有木有. 好了,不吹牛皮了. Element官方文档通俗易懂,框架什么的安装引 ...
- ACM博弈论总结
一.Bash博弈 1.问题模型:只有一堆n个物品,两人轮流从这堆物品中取物,最多取m个,最后取光者胜. 2.解决思路:当n=m+1时,由于一次最多取m个,无论先取者拿走多少个,后取者都能一次拿走剩余的 ...
- .NET 错误 47 存储区提供程序工厂类型“Oracle.DataAccess.Client.OracleClientFactory”未实现 IServiceProvider 接口。请使用实现该接口的存储区提供程序。
问题描述: 最近用VS2010连接ORACLE数据库的时候突然报错“错误 47 存储区提供程序工厂类型“Oracle.DataAccess.Client.OracleClientFactory”未实现 ...
- 用DataReader 分页与几种传统的分页方法的比较
对于数据库的分页,目前比较传统的方法是采用分页存储过程,其实用 DataReader 也可以实现分页,不需要写存储过程,实现效率上也比几种比较流行的分页方法要略快. 在开始这个方法之前,让我们先创建一 ...
- SQL SERVER 执行计划各字段注释
SET SHOWPLAN_ALL使 Microsoft® SQL Server™ 不执行 Transact-SQL 语句.相反,SQL Server 返回有关语句执行方式和语句预计所需资源的详细信息. ...
- vuex理解之modules小记
好记性不如烂笔头 demo预览 源代码 前情提要 关于vuex,其实很久以前就研究使用过,还研究过 flux,redux之类的体系,当时感觉对于 state,action,dispatch,views ...
- python学习笔记(4)——list[ ]
发现个问题,python与C.JAVA等语言相比学习障碍最大差别居然在于版本更迭!这是python官方造的虐啊... 有时针对某问题去google答案,或者自己去博客找共性解答,会出现相互矛盾或者与你 ...
- (转)版本管理工具介绍——SVN篇(二)
http://blog.csdn.net/yerenyuan_pku/article/details/72620498 上一篇文章我介绍了一下SVN,以及SVN服务器的安装,相信大家都安装了,接下来我 ...
- [iOS]查看苹果支持的所有字库
有时候,在开发的时候,想换个字体更加优雅的显示.但是不知道苹果本身到底支持了那些字体,怎么办? 没关系,打开这个网址:http://iosfonts.com/ 所见即所得,非常方便,而且还表明了从那个 ...
- 梦想MxWeb3D,三维CAD协同设计平台 2019.05.05更新
SDK开发包下载地址: http://www.mxdraw.com/ndetail_20140.html 在线演示网址: http://www.mxdraw.com:3000/ 1. 增加CAD绘图 ...