前言

众所周知,Catalyst Optimizer是Spark SQL的核心,它主要负责将SQL语句转换成最终的物理执行计划,在一定程度上决定了SQL执行的性能。

Catalyst在由Optimized Logical Plan生成Physical Plan的过程中,会根据:

abstract class SparkStrategies extends QueryPlanner[SparkPlan]

中的JoinSelection通过一些规则按照顺序进行模式匹配,从而确定join的最终执行策略,并且策略的选择会按照执行效率由高到低的优先级排列。

在了解join策略选择之前,首先看几个先决条件:

1. build table的选择

Hash Join的第一步就是根据两表之中较小的那一个构建哈希表,这个小表就叫做build table,大表则称为probe table,因为需要拿小表形成的哈希表来"探测"它。源码如下:

/* 左表作为build table的条件,join类型需满足:
1. InnerLike:实现目前包括inner join和cross join
2. RightOuter:right outer join
*/
private def canBuildLeft(joinType: JoinType): Boolean = joinType match {
case _: InnerLike | RightOuter => true
case _ => false
} /* 右表作为build table的条件,join类型需满足(第1种是在业务开发中写的SQL主要适配的):
1. InnerLike、LeftOuter(left outer join)、LeftSemi(left semi join)、LeftAnti(left anti join)
2. ExistenceJoin:only used in the end of optimizer and physical plans, we will not generate SQL for this join type
*/
private def canBuildRight(joinType: JoinType): Boolean = joinType match {
case _: InnerLike | LeftOuter | LeftSemi | LeftAnti | _: ExistenceJoin => true
case _ => false
}

2. 满足什么条件的表才能被广播

如果一个表的大小小于或等于参数spark.sql.autoBroadcastJoinThreshold(默认10M)配置的值,那么就可以广播该表。源码如下:

private def canBroadcastBySizes(joinType: JoinType, left: LogicalPlan, right: LogicalPlan)
: Boolean = {
val buildLeft = canBuildLeft(joinType) && canBroadcast(left)
val buildRight = canBuildRight(joinType) && canBroadcast(right)
buildLeft || buildRight
} private def canBroadcast(plan: LogicalPlan): Boolean = {
plan.stats.sizeInBytes >= 0 && plan.stats.sizeInBytes <= conf.autoBroadcastJoinThreshold
} private def broadcastSideBySizes(joinType: JoinType, left: LogicalPlan, right: LogicalPlan)
: BuildSide = {
val buildLeft = canBuildLeft(joinType) && canBroadcast(left)
val buildRight = canBuildRight(joinType) && canBroadcast(right) // 最终会调用broadcastSide
broadcastSide(buildLeft, buildRight, left, right)
}

除了通过上述表的大小满足一定条件之外,我们也可以通过直接在Spark SQL中显示使用hint方式(/*+ BROADCAST(small_table) */),直接指定要广播的表,源码如下:

private def canBroadcastByHints(joinType: JoinType, left: LogicalPlan, right: LogicalPlan)
: Boolean = {
val buildLeft = canBuildLeft(joinType) && left.stats.hints.broadcast
val buildRight = canBuildRight(joinType) && right.stats.hints.broadcast
buildLeft || buildRight
} private def broadcastSideByHints(joinType: JoinType, left: LogicalPlan, right: LogicalPlan)
: BuildSide = {
val buildLeft = canBuildLeft(joinType) && left.stats.hints.broadcast
val buildRight = canBuildRight(joinType) && right.stats.hints.broadcast // 最终会调用broadcastSide
broadcastSide(buildLeft, buildRight, left, right)
}

无论是通过表大小进行广播还是根据是否指定hint进行表广播,最终都会调用broadcastSide,来决定应该广播哪个表:

private def broadcastSide(
canBuildLeft: Boolean,
canBuildRight: Boolean,
left: LogicalPlan,
right: LogicalPlan): BuildSide = { def smallerSide =
if (right.stats.sizeInBytes <= left.stats.sizeInBytes) BuildRight else BuildLeft if (canBuildRight && canBuildLeft) {
// 如果左表和右表都能作为build table,则将根据表的统计信息,确定physical size较小的表作为build table(即使两个表都被指定了hint)
smallerSide
} else if (canBuildRight) {
// 上述条件不满足,优先判断右表是否满足build条件,满足则广播右表。否则,接着判断左表是否满足build条件
BuildRight
} else if (canBuildLeft) {
BuildLeft
} else {
// 如果左表和右表都不能作为build table,则将根据表的统计信息,确定physical size较小的表作为build table。目前主要用于broadcast nested loop join
smallerSide
}
}

从上述源码可知,即使用户指定了广播hint,实际执行时,不一定按照hint的表进行广播。

3. 是否可构造本地HashMap

应用于Shuffle Hash Join中,源码如下:

// 逻辑计划的单个分区足够小到构建一个hash表
// 注意:要求分区数是固定的。如果分区数是动态的,还需满足其他条件
private def canBuildLocalHashMap(plan: LogicalPlan): Boolean = {
// 逻辑计划的physical size小于spark.sql.autoBroadcastJoinThreshold * spark.sql.shuffle.partitions(默认200)时,即可构造本地HashMap
plan.stats.sizeInBytes < conf.autoBroadcastJoinThreshold * conf.numShufflePartitions
}

我们知道,SparkSQL目前主要实现了3种join:Broadcast Hash Join、ShuffledHashJoin、Sort Merge Join。那么Catalyst在处理SQL语句时,是依据什么规则进行join策略选择的呢?

1. Broadcast Hash Join

主要根据hint和size进行判断是否满足条件。

// broadcast hints were specified
case ExtractEquiJoinKeys(joinType, leftKeys, rightKeys, condition, left, right)
if canBroadcastByHints(joinType, left, right) =>
val buildSide = broadcastSideByHints(joinType, left, right)
Seq(joins.BroadcastHashJoinExec(
leftKeys, rightKeys, joinType, buildSide, condition, planLater(left), planLater(right))) // broadcast hints were not specified, so need to infer it from size and configuration.
case ExtractEquiJoinKeys(joinType, leftKeys, rightKeys, condition, left, right)
if canBroadcastBySizes(joinType, left, right) =>
val buildSide = broadcastSideBySizes(joinType, left, right)
Seq(joins.BroadcastHashJoinExec(
leftKeys, rightKeys, joinType, buildSide, condition, planLater(left), planLater(right)))

2. Shuffle Hash Join

选择Shuffle Hash Join需要同时满足以下条件:

  1. spark.sql.join.preferSortMergeJoin为false,即Shuffle Hash Join优先于Sort Merge Join

  2. 右表或左表是否能够作为build table

  3. 是否能构建本地HashMap

  4. 以右表为例,它的逻辑计划大小要远小于左表大小(默认3倍)

上述条件优先检查右表。

case ExtractEquiJoinKeys(joinType, leftKeys, rightKeys, condition, left, right)
if !conf.preferSortMergeJoin && canBuildRight(joinType) && canBuildLocalHashMap(right)
&& muchSmaller(right, left) ||
!RowOrdering.isOrderable(leftKeys) =>
Seq(joins.ShuffledHashJoinExec(
leftKeys, rightKeys, joinType, BuildRight, condition, planLater(left), planLater(right))) case ExtractEquiJoinKeys(joinType, leftKeys, rightKeys, condition, left, right)
if !conf.preferSortMergeJoin && canBuildLeft(joinType) && uildLocalHashMap(left)
&& muchSmaller(left, right) ||
!RowOrdering.isOrderable(leftKeys) =>
Seq(joins.ShuffledHashJoinExec(
leftKeys, rightKeys, joinType, BuildLeft, condition, planLater(left), planLater(right))) private def muchSmaller(a: LogicalPlan, b: LogicalPlan): Boolean = {
a.stats.sizeInBytes * 3 <= b.stats.sizeInBytes
}

如果不满足上述条件,但是如果参与join的表的key无法被排序,即无法使用Sort Merge Join,最终也会选择Shuffle Hash Join。

!RowOrdering.isOrderable(leftKeys)

def isOrderable(exprs: Seq[Expression]): Boolean = exprs.forall(e => isOrderable(e.dataType))

3. Sort Merge Join

如果上面两种join策略(Broadcast Hash Join和Shuffle Hash Join)都不符合条件,并且参与join的key是可排序的,就会选择Sort Merge Join。

case ExtractEquiJoinKeys(joinType, leftKeys, rightKeys, condition, left, right)
if RowOrdering.isOrderable(leftKeys) =>
joins.SortMergeJoinExec(
leftKeys, rightKeys, joinType, condition, planLater(left), planLater(right)) :: Nil

4. Without joining keys

Broadcast Hash Join、Shuffle Hash Join和Sort Merge Join都属于经典的ExtractEquiJoinKeys(等值连接条件)。

对于非ExtractEquiJoinKeys,则会优先检查表是否可以被广播(hint或者size)。如果可以,则会使用BroadcastNestedLoopJoin(简称BNLJ),熟悉Nested Loop Join则不难理解BNLJ,主要却别在于BNLJ加上了广播表。

源码如下:

// Pick BroadcastNestedLoopJoin if one side could be broadcast
case j @ logical.Join(left, right, joinType, condition)
if canBroadcastByHints(joinType, left, right) =>
val buildSide = broadcastSideByHints(joinType, left, right)
joins.BroadcastNestedLoopJoinExec(
planLater(left), planLater(right), buildSide, joinType, condition) :: Nil case j @ logical.Join(left, right, joinType, condition)
if canBroadcastBySizes(joinType, left, right) =>
val buildSide = broadcastSideBySizes(joinType, left, right)
joins.BroadcastNestedLoopJoinExec(
planLater(left), planLater(right), buildSide, joinType, condition) :: Nil

如果表不能被广播,又细分为两种情况:

  1. 若join类型InnerLike(关于InnerLike上面已有介绍)对量表直接进行笛卡尔积处理若

  2. 上述情况都不满足,最终方案是选择两个表中physical size较小的表进行广播,join策略仍为BNLJ

源码如下:

// Pick CartesianProduct for InnerJoin
case logical.Join(left, right, _: InnerLike, condition) =>
joins.CartesianProductExec(planLater(left), planLater(right), condition) :: Nil case logical.Join(left, right, joinType, condition) =>
val buildSide = broadcastSide(
left.stats.hints.broadcast, right.stats.hints.broadcast, left, right)
// This join could be very slow or OOM
joins.BroadcastNestedLoopJoinExec(
planLater(left), planLater(right), buildSide, joinType, condition) :: Nil

很显然,无论SQL语句最终的join策略选择笛卡尔积还是BNLJ,效率都很低,这一点在实际应用中,要尽量避免。

推荐文章:
SparkSQL与Hive metastore Parquet转换
通过Spark生成HFile,并以BulkLoad方式将数据导入到HBase
Spark SQL 小文件问题处理


关注微信公众号:大数据学习与分享,获取更对技术干货

Spark SQL如何选择join策略的更多相关文章

  1. 自适应查询执行:在运行时提升Spark SQL执行性能

    前言 Catalyst是Spark SQL核心优化器,早期主要基于规则的优化器RBO,后期又引入基于代价进行优化的CBO.但是在这些版本中,Spark SQL执行计划一旦确定就不会改变.由于缺乏或者不 ...

  2. Spark SQL中Not in Subquery为何低效以及如何规避

    首先看个Not in Subquery的SQL: // test_partition1 和 test_partition2为Hive外部分区表 select * from test_partition ...

  3. Spark SQL概念学习系列之Spark SQL 优化策略(五)

    查询优化是传统数据库中最为重要的一环,这项技术在传统数据库中已经很成熟.除了查询优化, Spark SQL 在存储上也进行了优化,从以下几点查看 Spark SQL 的一些优化策略. (1)内存列式存 ...

  4. Spark SQL 性能优化再进一步:CBO 基于代价的优化

    摘要: 本文将介绍 CBO,它充分考虑了数据本身的特点(如大小.分布)以及操作算子的特点(中间结果集的分布及大小)及代价,从而更好的选择执行代价最小的物理执行计划,即 SparkPlan. Spark ...

  5. 46、Spark SQL工作原理剖析以及性能优化

    一.工作原理剖析 1.图解 二.性能优化 1.设置Shuffle过程中的并行度:spark.sql.shuffle.partitions(SQLContext.setConf()) 2.在Hive数据 ...

  6. Spark SQL join的三种实现方式

    引言 join是SQL中的常用操作,良好的表结构能够将数据分散到不同的表中,使其符合某种规范(mysql三大范式),可以最大程度的减少数据冗余,更新容错等,而建立表和表之间关系的最佳方式就是join操 ...

  7. 47、Spark SQL核心源码深度剖析(DataFrame lazy特性、Optimizer优化策略等)

    一.源码分析 1. ###入口org.apache.spark.sql/SQLContext.scala sql()方法: /** * 使用Spark执行一条SQL查询语句,将结果作为DataFram ...

  8. Spark SQL Table Join(Python)

    示例   Spark SQL注册“临时表”执行“Join”(Inner Join.Left Outer Join.Right Outer Join.Full Outer Join)   代码   fr ...

  9. Spark SQL中的几种join

    1.小表对大表(broadcast join) 将小表的数据分发到每个节点上,供大表使用.executor存储小表的全部数据,一定程度上牺牲了空间,换取shuffle操作大量的耗时,这在SparkSQ ...

随机推荐

  1. 寻找两个数组中的公共元素Java程序代码

    package lianxi; import java.util.*; public class UnionSearch { public static void main(String[] args ...

  2. [LeetCode]86. Partition List分离链表

    /* 这个题是medium的意思应该是用双指针的方法做,如果使用下边的新建链表的方法,就是easy的题目了 双指针会用到很多链表的相连操作 */ public ListNode partition(L ...

  3. ESP8266-01烧录神器,ESP8266-01S烧录程序 ESP-01烧录固件

    如下图所示:"USB转ESP8266",在某宝上可以买到,但是建议买两个! 为什么要买两个呢?一个用于测试AT指令.接电呀什么的.另外一个通过焊接就可以改造成烧录器了. 引脚说明: ...

  4. ASP.NET Core Controller与IOC的羁绊

    前言 看到标题可能大家会有所疑问Controller和IOC能有啥羁绊,但是我还是拒绝当一个标题党的.相信有很大一部分人已经知道了这么一个结论,默认情况下ASP.NET Core的Controller ...

  5. 第十六章节 BJROBOT 开机自启动服务【ROS全开源阿克曼转向智能网联无人驾驶车】

    1.把小车平放在地板上,用资料里的虚拟机,打开一个终端 ssh 过去主控端运行rosrun robot_upstart install znjrobot/launch/bringup.launch 2 ...

  6. Adnc如何本地调试 - 一个轻量级的.Net Core微服务开发框架

    前言     Adnc是一个轻量级的.Net Core微服务开发框架,同样适用于单体架构系统的开发.     如果只是想本地调试,只需要安装必备软件,必备软件除开发工具外,其它软件建议大家都使用`do ...

  7. HDFS 修改默认副本数

    描述:将HDFS副本数修改为2第一步:将HDFS上已有文件副本数修改为2 hdfs dfs -setrep 2 -R -w / 第二步:修改dfs.replication值为2(页面上操作),然后重启 ...

  8. MAC与ARP缓存中毒介绍

    ARP 协议 用于地址解析,请求MAC地址. arp -a 或者 -n 查看ARP缓存表 ls(ARP) 查看scapy里的协议字段 ARP缓存中毒原理 ARP收到ARP请求报文,会将发送方的mac地 ...

  9. 通过DNSLOG回显验证漏洞

    通过DNSLOG回显验证漏洞 前言 实际渗透测试中,有些漏洞因为没有回显导致无法准确判断漏洞是否存在,可能导致渗透测试人员浪费大量精力在一个并不存在的漏洞上,因此为了验证一些无回显漏洞,可结合DNSl ...

  10. 白日梦的Elasticsearch笔记(一)基础篇

    目录 一.导读 1.1.认识ES 1.2.安装.启动ES.Kibana.IK分词器 二.核心概念 2.1.Near Realtime (NRT) 2.2.Cluster 2.3.Node 2.4.In ...