Apache Beam,批处理和流式处理的融合!
1. 概述
在本教程中,我们将介绍 Apache Beam 并探讨其基本概念。
我们将首先演示使用 Apache Beam 的用例和好处,然后介绍基本概念和术语。之后,我们将通过一个简单的例子来说明 Apache Beam 的所有重要方面。
2. Apache Beam是个啥?
Apache Beam(Batch+strEAM)是一个用于批处理和流式数据处理作业的统一编程模型。它提供了一个软件开发工具包,用于定义和构建数据处理管道以及执行这些管道的运行程序。
Apache Beam旨在提供一个可移植的编程层。事实上,Beam管道运行程序将数据处理管道转换为与用户选择的后端兼容的API。目前,支持这些分布式处理后端有:
- Apache Apex
- Apache Flink
- Apache Gearpump (incubating)
- Apache Samza
- Apache Spark
- Google Cloud Dataflow
- Hazelcast Jet
3. 为啥选择 Apache Beam
Apache Beam 将批处理和流式数据处理融合在一起,而其他组件通常通过单独的 API 来实现这一点。因此,很容易将流式处理更改为批处理,反之亦然,例如,随着需求的变化。
Apache Beam 提高了可移植性和灵活性。我们关注的是逻辑,而不是底层的细节。此外,我们可以随时更改数据处理后端。
Apache Beam 可以使用 Java、Python、Go和 Scala等SDK。事实上,团队中的每个人都可以使用他们选择的语言。
4. 基本概念
使用 Apache Beam,我们可以构建工作流图(管道)并执行它们。编程模型中的关键概念是:
PCollection–表示可以是固定批处理或数据流的数据集
PTransform–一种数据处理操作,它接受一个或多个 PCollections 并输出零个或多个 PCollections。
Pipeline–表示 PCollection 和 PTransform 的有向无环图,因此封装了整个数据处理作业。
PipelineRunner–在指定的分布式处理后端上执行管道。
简单地说,PipelineRunner 执行一个管道,管道由 PCollection 和 PTransform 组成。
5. 字数统计示例
现在我们已经学习了 Apache Beam 的基本概念,让我们设计并测试一个单词计数任务。
5.1 建造梁式管道
设计工作流图是每个 Apache Beam 作业的第一步,单词计数任务的步骤定义如下:
1.从原文中读课文。
2.把课文分成单词表。
3.所有单词都小写。
4.删去标点符号。
5.过滤停止语。
6.统计唯一单词数量。
为了实现这一点,我们需要使用 PCollection 和 PTransform 抽象将上述步骤转换为 管道 。
5.2. 依赖
在实现工作流图之前,先添加 Apache Beam的依赖项 到我们的项目:
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-sdks-java-core</artifactId>
<version>${beam.version}</version>
</dependency>
Beam管道运行程序依赖于分布式处理后端来执行任务。我们添加 DirectRunner 作为运行时依赖项:
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-runners-direct-java</artifactId>
<version>${beam.version}</version>
<scope>runtime</scope>
</dependency>
与其他管道运行程序不同,DirectRunner 不需要任何额外的设置,这对初学者来说是个不错的选择。
5.3. 实现
Apache Beam 使用 Map-Reduce 编程范式 ( 类似 Java Stream)。讲下面内容之前,最好 对 reduce(), filter(), count(), map(), 和 flatMap() 有个基础概念和认识。
首先要做的事情就是 创建管道:
PipelineOptions options = PipelineOptionsFactory.create();
Pipeline p = Pipeline.create(options);
六步单词计数任务:
PCollection<KV<String, Long>> wordCount = p
.apply("(1) Read all lines",
TextIO.read().from(inputFilePath))
.apply("(2) Flatmap to a list of words",
FlatMapElements.into(TypeDescriptors.strings())
.via(line -> Arrays.asList(line.split("\\s"))))
.apply("(3) Lowercase all",
MapElements.into(TypeDescriptors.strings())
.via(word -> word.toLowerCase()))
.apply("(4) Trim punctuations",
MapElements.into(TypeDescriptors.strings())
.via(word -> trim(word)))
.apply("(5) Filter stopwords",
Filter.by(word -> !isStopWord(word)))
.apply("(6) Count words",
Count.perElement());
apply() 的第一个(可选)参数是一个String,它只是为了提高代码的可读性。下面是上述代码中每个 apply() 的作用:
- 首先,我们使用 TextIO 逐行读取输入文本文件。
- 将每一行按空格分开,把它映射到一个单词表上。
- 单词计数不区分大小写,所以我们将所有单词都小写。
- 之前,我们用空格分隔行,但是像“word!“和”word?"这样的,就需要删除标点符号。
- 像“is”和“by”这样的停止词在几乎每一篇英语文章中都很常见,所以我们将它们删除。
- 最后,我们使用内置函数 Count.perElement() 计算唯一单词数量。
如前所述,管道是在分布式后端处理的。不可能在内存中的PCollection上迭代,因为它分布在多个后端。相反,我们将结果写入外部数据库或文件。
首先,我们将PCollection转换为String。然后,使用TextIO编写输出:
wordCount.apply(MapElements.into(TypeDescriptors.strings())
.via(count -> count.getKey() + " --> " + count.getValue()))
.apply(TextIO.write().to(outputFilePath));
现在管道 已经定义好了,接下来做个简单的测试。
5.4. 运行测试
到目前为止,我们已为单词计数任务定义了管道,现在运行管道:
p.run().waitUntilFinish();
在这行代码中,Apache Beam 将把我们的任务发送到多个 DirectRunner 实例。因此,最后将生成几个输出文件。它们将包含以下内容:
...
apache --> 3
beam --> 5
rocks --> 2
...
在 Apache Beam 中定义和运行分布式作业是如此地简单。为了进行比较,单词计数实现在 Apache Spark, Apache Flink 和 Hazelcast-Jet 上也有
6. 结语
在本教程中,我们了解了 Apache Beam 是什么,以及它为什么比其他选择更受欢迎。我们还通过一个单词计数示例演示了 Apache Beam 的基本概念。
如果你觉得文章还不错,记得关注公众号: 锅外的大佬
锅外的大佬博客
Apache Beam,批处理和流式处理的融合!的更多相关文章
- Spark SQL - 对大规模的结构化数据进行批处理和流式处理
Spark SQL - 对大规模的结构化数据进行批处理和流式处理 大体翻译自:https://jaceklaskowski.gitbooks.io/mastering-apache-spark/con ...
- Apache beam中的便携式有状态大数据处理
Apache beam中的便携式有状态大数据处理 目标: 什么是 apache beam? 状态 计时器 例子&小demo 一.什么是 apache beam? 上面两个图片一个是正面切图,一 ...
- Apache Beam编程指南
术语 Apache Beam:谷歌开源的统一批处理和流处理的编程模型和SDK. Beam: Apache Beam开源工程的简写 Beam SDK: Beam开发工具包 **Beam Java SDK ...
- Apache Beam是什么?
Apache Beam 的前世今生 1月10日,Apache软件基金会宣布,Apache Beam成功孵化,成为该基金会的一个新的顶级项目,基于Apache V2许可证开源. 2003年,谷歌发布了著 ...
- Spark之 Spark Streaming流式处理
SparkStreaming Spark Streaming类似于Apache Storm,用于流式数据的处理.Spark Streaming有高吞吐量和容错能力强等特点.Spark Streamin ...
- 深入浅出时序数据库之预处理篇——批处理和流处理,用户可定制,但目前流行influxdb没有做
时序数据是一个写多读少的场景,对时序数据库以及数据存储方面做了论述,数据查询和聚合运算同样是时序数据库必不可少的功能之一.如何支持在秒级对上亿数据的查询分组聚合运算成为了时序数据库产品必须要面对的挑战 ...
- Apache Beam—透视Google统一流式计算的野心
Google是最早实践大数据的公司,目前大数据繁荣的生态很大一部分都要归功于Google最早的几篇论文,这几篇论文早就了以Hadoop为开端的整个开源大数据生态,但是很可惜的是Google内部的这些系 ...
- Apache Flink流式处理
花了四小时,看完Flink的内容,基本了解了原理. 挖个坑,待总结后填一下. 2019-06-02 01:22:57等欧冠决赛中,填坑. 一.概述 storm最大的特点是快,它的实时性非常好(毫秒级延 ...
- Apache Beam实战指南 | 手把手教你玩转KafkaIO与Flink
https://mp.weixin.qq.com/s?__biz=MzU1NDA4NjU2MA==&mid=2247492538&idx=2&sn=9a2bd9fe2d7fd6 ...
随机推荐
- 使用 Iceberg on Kubernetes 打造新一代云原生数据湖
背景 大数据发展至今,按照 Google 2003年发布的<The Google File System>第一篇论文算起,已走过17个年头.可惜的是 Google 当时并没有开源其技术,& ...
- 一步一步实现直播软件源码的RTMP推流流媒体服务
第一步:准备工具 OBS推流工具下载及配置可以参见:OBS推流工具 第二步:安装流媒体服务 Windows/Linux系统环境中搭建直播流媒体服务 极速安装,下载解压一键启动即可,支持Windows和 ...
- 【SpringBoot】10.SpringBoot文件上传
SpringBoot整合Thymeleaf 1.创建Thymeleaf的入门项目 maven构建简单项目 修改pom文件添加thymeleaf的坐标 <!-- thymeleaf的坐标 --&g ...
- 17、ContentType组件
一 项目背景 路飞学成项目,有课程,学位课(不同的课程字段不一样),价格策略 问题: 1 如何设计表结构,来表示这种规则 2 为专题课,添加三个价格策略 3 查询所有价格策略,并且显示对应 ...
- 企业中真实需要的集中管理软件SVN即Subversion版本控制
一.SVN基本概念 SVN是Subversion的简称,是一个自由开源的版本控制系统. checkout: 把整个项目源码下载到本地 update: 从服务器上更新代码,使本地达到最新版本 commi ...
- 服务器断电导致的ORACLE异常 : ORA-00214 ORA-01033 ORA-01034 ORA-00172 ORA-27101
工作环境中的集群迁移之后,oracle出了挺多问题,最开始一直没找到原因,后来发现做迁移的人是冷迁移的,且数据库节点是硬关机的,惊了( 表现症状有不能登陆,登录了不能操作等 第一个报的是 ORA-00 ...
- 如何使用 gitlab 或 github 执行npm run build
一: 如何快速搭建一个组件库 首先,我们介绍一个快速包装组件库的工具:https://github.com/yanhaijing/jslib-base 按照文档来,就简单几步: npx @js ...
- springboot-rabbitmq之hello-world(一)
概念介绍 这里引用rabbit官网的一张图 image.png 大概意思就是生产着把消息发送到队列然后消费者消费消息 springboot实现 hello-world比较简单这里直接上代码 生产者 声 ...
- Hadoop2.6伪分布式按照官网指点安装(1)
参考:http://hadoop.apache.org/docs/r2.6.0/hadoop-project-dist/hadoop-common/SingleCluster.html 照抄:安装成功 ...
- Spring5.0源码学习系列之浅谈循环依赖问题
前言介绍 附录:Spring源码学习专栏 在上一章的学习中,我们对Bean的创建有了一个粗略的了解,接着本文浅谈Spring循环依赖问题,这是一个面试比较常见的问题 1.什么是循环依赖? 所谓的循环依 ...