给定一个二叉树,返回它的 后序 遍历。

示例:

输入: [1,null,2,3]
1
\
2
/
3 输出: [3,2,1]

思路:一开始编写二叉树后序遍历的程序,感觉定级为困难有点欠妥,确实,如果用递归的做法来做,和前序中序没有太大的程序上的变动,但是如果用非递归的做法来做,就会发现确实要多了一个判断过程。

(1)递归

    vector<int> a;
vector<int> postorderTraversal(TreeNode* root) {
if(root)
{
postorderTraversal(root->left);
postorderTraversal(root->right);
a.push_back(root->val);
}
return a;
}

(2)非递归

后序遍历的非递归实现是三种遍历方式中最难的一种。因为在后序遍历中,要保证左孩子和右孩子都已被访问并且左孩子在右孩子前访问才能访问根结点,这就为流程的控制带来了难题。下面介绍两种思路。

第一种思路:对于任一结点P,将其入栈,然后沿其左子树一直往下搜索,直到搜索到没有左孩子的结点,此时该结点出现在栈顶,但是此时不能将其出栈并访问,因此其右孩子还没有被访问。所以接下来按照相同的规则对其右子树进行相同的处理,当访问完其右孩子时,该结点又出现在栈顶,此时可以将其出栈并访问。这样就保证了正确的访问顺序。可以看出,在这个过程中,每个结点都两次出现在栈顶,只有在第二次出现在栈顶时,才能访问它。因此需要多设置一个变量标识该结点是否是第一次出现在栈顶。

  struct BTNode
 {
TreeNode* node;
bool isFirst;
BTNode(TreeNode* p): node(p),isFirst(true){}
};
vector<int> postorderTraversal(TreeNode* root) {
vector<int> a;
stack<BTNode*> s;
TreeNode* p=root;
BTNode*temp;
while(p!=NULL || !s.empty())
{
while(p)
{
BTNode* b=new BTNode(p);
s.push(b);
p=p->left;
}
if(!s.empty())
{
temp=s.top();
s.pop();
if(temp->isFirst==true)
{
temp->isFirst=false;
s.push(temp);
p=temp->node->right;
}
else
{
a.push_back(temp->node->val);
p=NULL;
}
}
}
return a;
}

这里多定义了一个结构体,里面包含了一个标志位isFirst,用来判断这个根节点是不是第一次来到栈顶,如果是第一次,isFirst==true,我们需要继续遍历此节点的右子树,并将其置位为false,这个时候要注意,前面已经将此节点pop出来了,要再次将其push到栈中,如果是第二次,就证明它的左右子树都已经遍历过了,所以就直接将此节点的值打印就好了。

第二种思路:要保证根结点在左孩子和右孩子访问之后才能访问,因此对于任一结点P,先将其入栈。如果P不存在左孩子和右孩子,则可以直接访问它;或者P存在左孩子或者右孩子,但是其左孩子和右孩子都已被访问过了,则同样可以直接访问该结点。若非上述两种情况,则将P的右孩子和左孩子依次入栈,这样就保证了每次取栈顶元素的时候,左孩子在右孩子前面被访问,左孩子和右孩子都在根结点前面被访问。

 vector<int> postorderTraversal(TreeNode* root) {
stack<TreeNode*> s;
TreeNode *cur=NULL; //当前结点
TreeNode *pre=NULL; //前一次访问的结点
vector<int> a;
s.push(root);
while(root && !s.empty())
{
cur=s.top();
if((cur->left==NULL&&cur->right==NULL)||(pre!=NULL &&(pre==cur->left||pre==cur->right)))
{
a.push_back(cur->val); //如果当前结点没有孩子结点或者孩子节点都已被访问过
s.pop();
pre=cur;
}
else
{
if(cur->right!=NULL)
s.push(cur->right);
if(cur->left!=NULL)
s.push(cur->left);
}
}
return a;
}

这个思路很好,目的也是要保证遍历过程的正确性,多使用了一个指针pre来存储前一次访问的节点,这样就可以判断此节点的右子树有没有被访问过。判断条件中

(pre!=NULL &&(pre==cur->left||pre==cur->right))

很难理解,一开始会想,这里的pre==cur->left是错误的,因为如果我前一个访问的是该节点的左孩子,那就可以直接访问该节点吗,怎么可能呢。仔细想,就是这样的。因为这种情况只可能出现在,该节点没有右孩子,所以上一个访问完左孩子,直接就可以访问该节点。如果有右孩子在,上一个访问的节点不可能是左孩子,因为右孩子是在此节点之后打入栈中的,会更早的出现在栈顶。

												

Leetcode(145)-二叉树的后序遍历的更多相关文章

  1. LeetCode 145. 二叉树的后序遍历(Binary Tree Postorder Traversal)

    145. 二叉树的后序遍历 145. Binary Tree Postorder Traversal 题目描述 给定一个二叉树,返回它的 后序 遍历. LeetCode145. Binary Tree ...

  2. Java实现 LeetCode 145 二叉树的后序遍历

    145. 二叉树的后序遍历 给定一个二叉树,返回它的 后序 遍历. 示例: 输入: [1,null,2,3] 1 \ 2 / 3 输出: [3,2,1] 进阶: 递归算法很简单,你可以通过迭代算法完成 ...

  3. LeetCode 145 二叉树的后序遍历(非递归)

    题目: 给定一个二叉树,返回它的 后序 遍历. 示例: 输入: [1,null,2,3] 1 \ 2 / 3 输出: [3,2,1] 进阶: 递归算法很简单,你可以通过迭代算法完成吗? 解题思路: 1 ...

  4. 【leetcode 145. 二叉树的后序遍历】解题报告

    前往二叉树的:前序,中序,后序 遍历算法 方法一:递归 vector<int> res; vector<int> postorderTraversal(TreeNode* ro ...

  5. Leetcode 145. 二叉树的后序遍历

    题目链接 https://leetcode-cn.com/problems/binary-tree-postorder-traversal/description/ 题目描述 给定一个二叉树,返回它的 ...

  6. LeetCode 145. 二叉树的后序遍历(Binary Tree Postorder Traversal)

    题目描述 给定一个二叉树,返回它的 后序 遍历. 示例: 输入: [1,null,2,3] 1 \ 2 / 3 输出: [3,2,1] 进阶: 递归算法很简单,你可以通过迭代算法完成吗? 解题思路 后 ...

  7. LeetCode 145. 二叉树的后序遍历 (用栈实现后序遍历二叉树的非递归算法)

    题目链接:https://leetcode-cn.com/problems/binary-tree-postorder-traversal/ 给定一个二叉树,返回它的 后序 遍历. 示例: 输入: [ ...

  8. LeetCode 145 ——二叉树的后序遍历

    1. 题目 2. 解答 2.1. 递归法 定义一个存放树中数据的向量 data,从根节点开始,如果节点不为空,那么 递归得到其左子树的数据向量 temp,将 temp 合并到 data 中去 递归得到 ...

  9. LeetCode:二叉树的后序遍历【145】

    LeetCode:二叉树的后序遍历[145] 题目描述 给定一个二叉树,返回它的 后序 遍历. 示例: 输入: [1,null,2,3] 1 \ 2 / 3 输出: [3,2,1] 进阶: 递归算法很 ...

  10. 【LeetCode】145. 二叉树的后序遍历

    145. 二叉树的后序遍历 知识点:二叉树:递归:Morris遍历 题目描述 给定一个二叉树的根节点 root ,返回它的 后序 遍历. 示例 输入: [1,null,2,3] 1 \ 2 / 3 输 ...

随机推荐

  1. 查看Java的汇编指令

    在IDEA配置VM options,打印汇编指令 -XX:+UnlockDiagnosticVMOptions -XX:+PrintAssembly windows系统 下载插件 hsdis-amd6 ...

  2. 微信登录2-生成授权URL

    一.准备工作 1.注册 微信开放平台:https://open.weixin.qq.com 2.邮箱激活 3.完善开发者资料 4.开发者资质认证 准备营业执照,1-2个工作日审批.300元 5.创建网 ...

  3. 彻底解决小程序无法触发SESSION问题

    一.首先找到第一次发起网络请求的地址,将服务器返回set-cookie当全局变量存储起来 wx.request({ ...... success: function(res) { console.lo ...

  4. Linq.Expressions扩展ExpressionExtension

    手上有一个以前项目用到的.NET工具类封装的DLL. 正好又想试一下动态LAMBDA表达式,用.NET Reflector看一下源码. public static class ExpressionEx ...

  5. SpringBoot 报错: Circular view path [readingList] 解决办法

    spring boot报错: Circular view path [readingList]: would dispatch back to the current handler URL [/re ...

  6. Connection Manager简称connman

    ConnMan    Connection Manager简称connman,connman是使用d-bus做为进程间通信机制来管理Linux网络链接的一种软件.在connman的d-bus接口中,有 ...

  7. 洛谷P4317

    Description 定义 \(sum(i)\) 表示 \(i\) 的二级制中 1 的个数 给定一个 N,求 \(\prod_{i=1}^N sum(i)\) Solution 显然是数位 DP 考 ...

  8. P4826

    总的来说, 这道题只考查了单纯的建图和最大生成树 但这却是蓝题(问号 题意 题意的理解比较麻烦 简单说就是 n 支队伍比赛,i 号队伍和 j 号队伍比赛可获得 i ^ j 的分数,然后其中一支队伍会输 ...

  9. 反弹SHELL介绍及原理

    如果我们需要到服务器上执行 Shell 命令,但是因为防火墙等原因,无法由客户端主动发起连接的情况,就可以使用反弹 Shell 来满足登陆和操作的需求. 什么是反弹Shell 正常情况下,我们登陆服务 ...

  10. HBase二级索引、读写流程

    HBase二级索引.读写流程 一.HBse二级索引方案 1.1 基于Coprocessor方案 1.2 Phoenix二级索引特点 1.3 Phoenix 二级索引方案 二.HBase读写流程 2.1 ...