如何用Python 制作词云-对1000首古诗做词云分析
公号:码农充电站pro
主页:https://codeshellme.github.io

今天来介绍一下如何使用 Python 制作词云。
词云又叫文字云,它可以统计文本中频率较高的词,并将这些词可视化,让我们可以直观的了解文本中的重点词汇。
词的频率越高,词显示的大小也就越大。
1,wordcloud 模块
wordcloud 是一个词云生成器,它不仅是一个 Python 库,还是一个命令行工具。我们可以通过 wordcloud 官方文档,和示例库来学习如何使用它。
在使用 wordcloud 之前,需要先安装它:
pip install wordcloud
2,WordCloud 类
WordCloud 类用于创建词云对象,先来看下它的原型:
WordCloud(font_path=None,
width=400, height=200,
margin=2, ranks_only=None,
prefer_horizontal=0.9,
mask=None, scale=1,
color_func=None, max_words=200,
min_font_size=4, stopwords=None,
random_state=None,
background_color='black',
max_font_size=None,
font_step=1, mode='RGB',
relative_scaling='auto',
regexp=None, collocations=True,
colormap=None, normalize_plurals=True,
contour_width=0, contour_color='black',
repeat=False, include_numbers=False,
min_word_length=0,
collocation_threshold=30)
可以看到,WordCloud 类有很多参数可以设置,这里介绍一些常用的参数:
- font_path:设置字体文件路径,字体文件以
.ttf为后缀。- 如果分析的文本是中文,则需要设置中文字体,否则会乱码。
- background_color:设置图片背景颜色,默认为 black,也可以设置为 white 等。
- mask:设置背景图片。
- max_words:设置最大的词数,默认为200。
- stopwords:设置停用词。
- max_font_size:设置字体最大值。
- width:设置画布的宽度,默认为400。
- height:设置画布的高度,默认为200。
- random_state:设置多少种随机状态,即多少种颜色。
在创建好词云对象后,可以使用 generate 方法生成词云,并使用 to_file 方法将词云图像保存在文件中。
generate 方法的原型如下:
generate(text)
参数text 是一个用空格隔开的文本字符串。如果分析的是中文,需要先用 jieba 进行分词,可以参考这里。
除了将词云图像保存在文件中,还可以使用 Matplotlib 模块显示词云图像,示例代码如下:
import matplotlib.pyplot as plt
plt.imshow(wordcloud) # wordcloud 是词云对象
plt.axis("off") # 用于关闭坐标轴
plt.show()
3,一个简单的示例
下面演示一个最简单的示例,来看如何使用 wordcloud。
首先创建词云对象:
from wordcloud import WordCloud
wc = WordCloud()
生成词云:
text = "Python is a programming language, it is easy to use."
wc.generate(text)
词云对象的 words_ 属性中存储了每个单词的(归一化后的)权重,权重的范围是 (0, 1]。
words_ 属性是一个字典类型,它存储的键的最大个数为 max_words,即 WordCloud 类的参数。
如下:
>>> wc.words_
{'Python': 1.0, 'programming': 1.0, 'language': 1.0, 'easy': 1.0, 'use': 1.0}
# 示例中的这些单词出现的频率都相等(均为 1),
# 所以它们的权重都是 1。
用 Matplotlib 展示词云图像:
import matplotlib.pyplot as plt
plt.imshow(wc)
plt.axis("off")
plt.show()
词云图像如下:

4,对古诗做词云分析
我在这里准备了一个案例,是对1000 首古诗做词云分析。
代码目录如下:
wordcloud/
├── SimHei.ttf
├── gushi.txt
└── gushi_wordcloud.py
其中:
我将代码也放在这里,方便查看:
#!/usr/bin/env python
# coding=utf-8
import os
import sys
import jieba
from wordcloud import WordCloud
if sys.version.startswith('2.'):
reload(sys)
sys.setdefaultencoding('utf-8')
# 去掉一些作者的名字
STOPWORDS = [
u'李白', u'杜甫', u'辛弃疾', u'李清照', u'苏轼',
u'李商隐', u'王维', u'白居易', u'李煜', u'杜牧',
]
def load_file(file_path):
if sys.version.startswith('2.'):
with open(file_path) as f:
lines = f.readlines()
else:
with open(file_path, encoding='utf-8') as f:
lines = f.readlines()
content = ''
for line in lines:
line = line.encode('unicode-escape').decode('unicode-escape')
line = line.strip().rstrip('\n')
content += line
words = jieba.cut(content)
l = []
for w in words:
# 如果词的长度小于 2,则舍去
if len(w) < 2: continue
l.append(w)
return ' '.join(l)
if __name__ == '__main__':
file_path = './gushi.txt'
content = load_file(file_path)
wc = WordCloud(
font_path="./SimHei.ttf",
stopwords=STOPWORDS,
width=2000, height=1200)
wc.generate(content)
wc.to_file("wordcloud.jpg")
其中:
STOPWORDS停用词列表,是一些作者的名字。load_file方法用于加载文本,其中用到了 jieba 分词。
最后将词云图像保存在了 wordcloud.jpg 文件中,如下:

我们也可以从词云对象的words_ 属性中查看每个词的权重,这里我列出前十个:
('明月', 1.0)
('今日', 0.9130434782608695)
('不知', 0.8405797101449275)
('何处', 0.8260869565217391)
('不见', 0.8115942028985508)
('春风', 0.7536231884057971)
('无人', 0.7536231884057971)
('不可', 0.7536231884057971)
('万里', 0.7536231884057971)
('现代', 0.6666666666666666)
(本节完。)
推荐阅读:
欢迎关注作者公众号,获取更多技术干货。

如何用Python 制作词云-对1000首古诗做词云分析的更多相关文章
- 如何用Python做词云(收藏)
看过之后你有什么感觉?想不想自己做一张出来? 如果你的答案是肯定的,我们就不要拖延了,今天就来一步步从零开始做个词云分析图.当然,做为基础的词云图,肯定比不上刚才那两张信息图酷炫.不过不要紧,好的开始 ...
- 一步一步教你如何用Python做词云
前言 在大数据时代,你竟然会在网上看到的词云,例如这样的. 看到之后你是什么感觉?想不想自己做一个? 如果你的答案是正确的,那就不要拖延了,现在我们就开始,做一个词云分析图,Python是一个当下很流 ...
- python 生成18年写过的博客词云
文章链接:https://mp.weixin.qq.com/s/NmJjTEADV6zKdT--2DXq9Q 回看18年,最有成就的就是有了自己的 博客网站,坚持记录,写文章,累计写了36篇了,从一开 ...
- Python给小说做词云
闲暇时间喜欢看小说,就想着给小说做词云,展示小说的主要内容.开发语言是Python,主要用到的库有wordcloud.jieba.scipy.代码很简单,首先用jieba.cut()函数做分词,生成以 ...
- python3做词云分析
python3做词云 其实词云一般分为两种,一个是权重比,一个是频次分析 主要还是体现在自然语言方向,难度较大,但这里我们用jieba词库 主要思路, 后端算数据+前端生成图(D3-cloud-好像是 ...
- 纯前端实现词云展示+附微博热搜词云Demo代码
前言 最近工作中做了几个数据可视化大屏项目,其中也有用到了词云展示,以前做词云都是用python库来生成图片显示的,这次用了纯前端的实现(Ctrl+V真好用),同时顺手做个微博热搜的词云然后记录一下~ ...
- 做词云时报错cannot import name ‘WordCloud‘ from partially initialized module ‘wordcloud‘的解决办法
问题: 在做词云时,运行时出现该问题,wordcloud安装成功,但运行出错,错误提示是:cannot import name 'WordCloud' from partially initializ ...
- 词云wordcloud类介绍&python制作词云图&词云图乱码问题等小坑
词云图,大家一定见过,大数据时代大家经常见,我们今天就来用python的第三方库wordcloud,来制作一个大数据词云图,同时会降到这个过程中遇到的各种坑, 举个例子,下面是我从自己的微信上抓的微信 ...
- python制作词云
需要模块wordcloud,pip install wordcloud安装即可.代码: , #边距background_color='black',#指定背景颜色font_path='simhei.t ...
随机推荐
- 网页中Office和pdf相关文件导出
最近被派去维护和开发一些做了一半.年久失修的项目.有一部分内容是关于word文件导出,顺带着把excel.pdf文件的导出也调研下吧,我想未来开发我应该会遇到的,遂做了下笔记分享给需要的人. 由于项目 ...
- BT下载器Folx中删除任务与删除文件的功能区别
当用户使用Folx完成了任务下载后,该任务仍会保留在下载列表中,并标注"已结束"的标记.随着使用时间的增长,Folx下载列表中会包含过多的"已结束"任务,用户需 ...
- ABBYY FineReader 15 如何为PDF文档添加页眉页脚
页眉.页脚是文档页面顶部或底部重复出现的文本信息.很多用户会习惯在文档页面的顶部与底部区域添加页眉.页脚来展现页码.文档标题.作者姓名.品牌名称等附加信息.而ABBYY FineReader 15(W ...
- yii2.0 ActiveForm 单选框与复选框使用
yii2.0 中的ActiveForm 复选框的使用 默认的复选框选项为纵向的<?= $form->field($model, 'line')->checkboxList(Pictu ...
- 精尽MyBatis源码分析 - 插件机制
该系列文档是本人在学习 Mybatis 的源码过程中总结下来的,可能对读者不太友好,请结合我的源码注释(Mybatis源码分析 GitHub 地址.Mybatis-Spring 源码分析 GitHub ...
- 牛客练习赛71 数学考试 题解(dp)
题目链接 题目大意 要你求出有多少个长度为n的排列满足m个限制条件 第i个限制条件 p[i]表示前 p[i]个数不能是1-p[i]的排列 题目思路 这个感觉是dp但是不知道怎么dp 首先就是要明白如果 ...
- ERP制造模块操作与设计--开源软件诞生30
赤龙ERP制造模块讲解--第30篇 用日志记录"开源软件"的诞生 [进入地址 点亮星星]----祈盼着一个鼓励 博主开源地址: 码云:https://gitee.com/redra ...
- django搭建
1.进入终端使用虚拟环境安装---pip install django==2.2 2.创建新的工程django-admin startproject bookpro 3.创建app或模块 使用djan ...
- python办公入门7:xlwt
xlwt写入excel步骤 创建工作簿 创建工作表 填充工作表内容 保存文件 1 import xlwt 2 3 #创建工作簿 4 wb=xlwt.Workbook() 5 #创建工作表 6 ws=w ...
- select监听服务端
# can_read, can_write, _ = select.select(inputs, outputs, None, None)## 第一个参数是我们需要监听可读的套接字, 第二个参数是我们 ...