转:locality sensitive hashing

Motivation
The task of finding nearest neighbours is very common. You can think of applications like finding duplicate or similar documents, audio/video search. Although using brute force to check for all possible combinations will give you the exact nearest neighbour but it’s not scalable at all. Approximate algorithms to accomplish this task has been an area of active research. Although these algorithms don’t guarantee to give you the exact answer, more often than not they’ll be provide a good approximation. These algorithms are faster and scalable.
Locality sensitive hashing (LSH) is one such algorithm. LSH has many applications, including:

- Near-duplicate detection: LSH is commonly used to deduplicate large quantities of documents, webpages, and other files.
- Genome-wide association study: Biologists often use LSH to identify similar gene expressions in genome databases.
- Large-scale image search: Google used LSH along with PageRank to build their image search technology VisualRank.
- Audio/video fingerprinting: In multimedia technologies, LSH is widely used as a fingerprinting technique A/V data.
In this blog, we’ll try to understand the workings of this algorithm.
General Idea

LSH refers to a family of functions (known as LSH families) to hash data points into buckets so that data points near each other are located in the same buckets with high probability, while data points far from each other are likely to be in different buckets. This makes it easier to identify observations with various degrees of similarity.
Finding similar documents
Let’s try to understand how we can leverage LSH in solving an actual problem. The problem that we’re trying to solve:
Goal: You have been given a large collections of documents. You want to find “near duplicate” pairs.
In the context of this problem//////再次问题的背景下, we can break down the LSH algorithm into 3 broad steps:
- Shingling
- Min hashing
- Locality-sensitive hashing

Shingling
In this step, we convert each document into a set of characters of length k (also known as k-shingles or k-grams). The key idea is to represent each document in our collection as a set of k-shingles.

For ex: One of your document (D): “Nadal”. Now if we’re interested in 2-shingles, then our set: {Na, ad, da, al}. Similarly set of 3-shingles: {Nad, ada, dal}.
- Similar documents are more likely to share more shingles
- Reordering paragraphs in a document of changing words doesn’t have much affect on shingles
- k value of 8–10 is generally used in practice. A small value will result in many shingles which are present in most of the documents (bad for differentiating documents)
Jaccard Index
We’ve a representation of each document in the form of shingles. Now, we need a metric to measure similarity between documents. Jaccard Index is a good choice for this. Jaccard Index between document A & B can be defined as:

It’s also known as intersection over union (IOU).
A: {Na, ad, da, al} and B: {Na, ad, di, ia}.

Jaccard Index = 2/6
Let’s discuss 2 big issues that we need to tackle:
Time complexity
Now you may be thinking that we can stop here. But if you think about the scalability, doing just this won’t work. For a collection of n documents, you need to do n*(n-1)/2 comparison, basically O(n²). Imagine you have 1 million documents, then the number of comparison will be 5*10¹¹ (not scalable at all!).
Space complexity
The document matrix is a sparse matrix and storing it as it is will be a big memory overhead. One way to solve this is hashing.
Hashing
The idea of hashing is to convert each document to a small signature using a hashing function H*.* Suppose a document in our corpus is denoted by d. Then:
- H(d) is the signature and it’s small enough to fit in memory
- If similarity(d1,d2) is high then *Probability(H(d1)==H(d2))* is high
- If similarity(d1,d2) is low then *Probability(H(d1)==H(d2))* is low
Choice of hashing function is tightly linked to the similarity metric we’re using. For Jaccard similarity the appropriate hashing function is min-hashing.
Min hashing
This is the critical and the most magical aspect of this algorithm so pay attention:
Step 1: Random permutation (π) of row index of document shingle matrix.

////////对行进行随机排列
Step 2: Hash function is the index of the first (in the permuted order) row in which column C has value 1. Do this several time (use different permutations) to create signature of a column.
第2步:哈希函数是列C值为1的第一行(按顺序排列)的索引。这样做几次(使用不同的排列)来创建一个列的签名。



////这个图根本看不懂
转:locality sensitive hashing的更多相关文章
- [Algorithm] 局部敏感哈希算法(Locality Sensitive Hashing)
局部敏感哈希(Locality Sensitive Hashing,LSH)算法是我在前一段时间找工作时接触到的一种衡量文本相似度的算法.局部敏感哈希是近似最近邻搜索算法中最流行的一种,它有坚实的理论 ...
- 局部敏感哈希-Locality Sensitive Hashing
局部敏感哈希 转载请注明http://blog.csdn.net/stdcoutzyx/article/details/44456679 在检索技术中,索引一直须要研究的核心技术.当下,索引技术主要分 ...
- LSH(Locality Sensitive Hashing)原理与实现
原文地址:https://blog.csdn.net/guoziqing506/article/details/53019049 LSH(Locality Sensitive Hashing)翻译成中 ...
- Locality Sensitive Hashing,LSH
1. 基本思想 局部敏感(Locality Senstitive):即空间中距离较近的点映射后发生冲突的概率高,空间中距离较远的点映射后发生冲突的概率低. 局部敏感哈希的基本思想类似于一种空间域转换思 ...
- 局部敏感哈希算法(Locality Sensitive Hashing)
from:https://www.cnblogs.com/maybe2030/p/4953039.html 阅读目录 1. 基本思想 2. 局部敏感哈希LSH 3. 文档相似度计算 局部敏感哈希(Lo ...
- 局部敏感哈希Locality Sensitive Hashing(LSH)之随机投影法
1. 概述 LSH是由文献[1]提出的一种用于高效求解最近邻搜索问题的Hash算法.LSH算法的基本思想是利用一个hash函数把集合中的元素映射成hash值,使得相似度越高的元素hash值相等的概率也 ...
- 局部敏感哈希-Locality Sensitivity Hashing
一. 近邻搜索 从这里开始我将会对LSH进行一番长篇大论.因为这只是一篇博文,并不是论文.我觉得一篇好的博文是尽可能让人看懂,它对语言的要求并没有像论文那么严格,因此它可以有更强的表现力. 局部敏感哈 ...
- 从NLP任务中文本向量的降维问题,引出LSH(Locality Sensitive Hash 局部敏感哈希)算法及其思想的讨论
1. 引言 - 近似近邻搜索被提出所在的时代背景和挑战 0x1:从NN(Neighbor Search)说起 ANN的前身技术是NN(Neighbor Search),简单地说,最近邻检索就是根据数据 ...
- Locality Sensitive Hash 局部敏感哈希
Locality Sensitive Hash是一种常见的用于处理高维向量的索引办法.与其它基于Tree的数据结构,诸如KD-Tree.SR-Tree相比,它较好地克服了Curse of Dimens ...
随机推荐
- 利用c++ std::getline实现split
getline reads characters from an input stream and places them into a string: getline从输入流中读取字符, 并把它们转 ...
- zabbix实现自定义自动发现的流程
前言 本章介绍如何去自定义一个zabbix自动发现的整个流程 过程 首先需要在模板当中创建一个自动发现的规则,这个地方只需要一个名称和一个键值,例如 名称:Ceph Cluster Pool Disc ...
- Cisco思科模拟器路由器各个端口IP地址的配置及路由协议RIP的配置 入门详解 - 精简归纳
Cisco思科模拟器路由器各个端口IP地址的配置及路由协议RIP的配置 入门详解 - 精简归纳 JERRY_Z. ~ 2020 / 11 / 21 转载请注明出处!️ 附: 交流方式: ️ ️ ️ Q ...
- Mysql获取webshell方式总结
select ... into outfile general_log cnblogs-MySQL获取webshell的几种方式 csdn-PhpMyadmin后台拿webshell方法总结
- kali 更新msf
用leafpad打开,方便复制粘贴 leafpad /etc/apt/sources.list 然后复制下面的源覆盖原本的 deb http://mirrors.ustc.edu.cn/kali ka ...
- Angular 富文本编辑之路的探索
作者:杨振兴Worktile 前端工程师,PingCode Wiki 产品技术负责人 PingCode Wiki 提供结构化知识库来记载信息和知识,便于团队沉淀经验.共享资源,欢迎大家注册试用 本文主 ...
- MindManager 2021 版新增了哪些功能
MindManager Windows 21是一款强大的可视化工具和思维导图软件,在工作应用中有出色的表现.今天就带大家来看下这个新版本增加了哪些功能? 1.新增现代主题信息样式MindManager ...
- FL Studio时间面板讲解
今天我们一起来学习一下FL Studio时间面板的知识.看到这个名词我们一定就会想到该功能跟时间是脱不了关系的,是的,它就是用来显示时间的.它显示当前时间的方法不是很单一,而是有好几个,具体有哪几个下 ...
- guitar pro系列教程(十四):Guitar Pro教程之创建新乐谱后的设置
前面的章节我们有对Guitar Pro的单个功能作介绍,对于初学作曲,且又是吉他初学者的朋友们来说,学完这些功能介绍,自己还不能融会贯通起来,创建了一个新的乐谱后,但是看起来还不是很满意,今天我们就创 ...
- jenkins 安装与创建项目
一.安装1.jenkins下载地址:https://jenkins.io/zh/ 中文版2.下载下来,是msi文件,直接安装3.本地访问,localhost:8080 二.访问 如果访问不了,以下原因 ...