\(\texttt{Solution}\)

数据结构学傻的蒟蒻来写一个新思路

这题的正解是利用多个结点的 \(lca\) 是 \(dfs\) 序最大的结点和 \(dfs\) 序最小的结点的 \(lca\)。但是这里考虑如何不用这种方法。

首先用线段树合并处理出在每一个结点的子树里面的点。

答案分为两种情况:

1. 包含结点 \(l\)。

那么我们可以以 \(l\) 为起点向上跳。找到第一个大小 \(\ge r - l\) 的结点 \(p\)。然后在结点 \(p\) 上面二分找到是没有选哪个结点。

2. 包含除了结点 \(l\) 外的所有结点。

那么我们可以以 \(l\) 为起点向上跳。找到第一个大小 \(\ge r - l\) 的结点 \(p\)。这样子的答案就是 \(l\)。

\(\texttt{Code}\)

#include<bits/stdc++.h>
using namespace std;
#define L(i, j, k) for(int i = (j), i##E = (k); i <= i##E; i++)
#define R(i, j, k) for(int i = (j), i##E = (k); i >= i##E; i--)
#define ll long long
#define db double
#define mkp make_pair
const int N = 2e5 + 7;
const int M = 8e6 + 7;
int n, m, fa[N], siz[N], dep[N], jp[20][N];
int head[N], edge_id;
int hd[N], sum[M], ch[M][2], tot;
struct node { int to, next; } e[N << 1];
void add_edge(int u, int v) { ++edge_id, e[edge_id].next = head[u], e[edge_id].to = v, head[u] = edge_id; }
void add(int &x, int L, int R, int wz) {
if(!x) x = ++tot;
sum[x]++;
if(L == R) return;
int mid = (L + R) / 2;
if(wz <= mid) add(ch[x][0], L, mid, wz);
else add(ch[x][1], mid + 1, R, wz);
}
int merge(int x, int y) {
if(!x || !y) return x | y;
int nw = ++tot;
sum[nw] = sum[x] + sum[y];
ch[nw][0] = merge(ch[x][0], ch[y][0]);
ch[nw][1] = merge(ch[x][1], ch[y][1]);
return nw;
}
int query(int x, int L, int R, int l, int r) {
if(!x) return 0;
if(l <= L && R <= r) return sum[x];
int mid = (L + R) / 2, res = 0;
if(l <= mid) res += query(ch[x][0], L, mid, l, r);
if(r > mid) res += query(ch[x][1], mid + 1, R, l, r);
return res;
}
void dfs(int x) {
siz[x] = 1, add(hd[x], 1, n, x);
for(int i = head[x]; i; i = e[i].next) {
int v = e[i].to;
dep[v] = dep[x] + 1, dfs(v), siz[x] += siz[v];
// cout << " ? \n";
hd[x] = merge(hd[x], hd[v]);
// cout << " ! \n";
}
}
int get(int x, int l, int r, int y) {
int nowans = query(hd[x], 1, n, l, r);
if(nowans > y) return 0;
if(nowans == y) return x;
int now = x;
R(i, 18, 0) if(jp[i][now] && query(hd[jp[i][now]], 1, n, l, r) < y) now = jp[i][now];
now = fa[now];
if(query(hd[now], 1, n, l, r) != y) return 0;
return now;
}
int main() {
scanf("%d%d", &n, &m);
L(i, 2, n) scanf("%d", &fa[i]), add_edge(fa[i], i), jp[0][i] = fa[i];
L(i, 1, 18) L(j, 1, n) jp[i][j] = jp[i - 1][jp[i - 1][j]];
dfs(1);
while(m--) {
int l, r;
scanf("%d%d", &l, &r);
int resa = get(l + 1, l + 1, r, r - l), resb = get(l, l, r, r - l);
// 1 : not contain l
if(dep[resa] >= dep[resb]) printf("%d %d\n", l, dep[resa]);
// 2 : contain l
else {
int L = l, R = r;
while(L < R) {
int mid = (L + R) / 2;
if(query(hd[resb], 1, n, L, mid) != mid - L + 1) R = mid;
else L = mid + 1;
}
printf("%d %d\n", L, dep[resb]);
}
}
return 0;
}

题解 CF1062E Company的更多相关文章

  1. CF1062E Company

    CF1062E Company 链接 cf luogu 题目大意 给定一颗树,有若干个询问,每个询问给出 l,r,要求编号为 ll~rr 的点任意删去一个之后剩余点的 LCA 深度最大,输出删去点的编 ...

  2. poj1416 Shredding Company

    Shredding Company Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5379   Accepted: 3023 ...

  3. Codeforces 556D Restructuring Company

    传送门 D. Restructuring Company time limit per test 2 seconds memory limit per test 256 megabytes input ...

  4. VK Cup 2015 - Finals, online mirror D. Restructuring Company 并查集

    D. Restructuring Company Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/5 ...

  5. Codeforces Round #321 (Div. 2) B. Kefa and Company 二分

    B. Kefa and Company Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/580/pr ...

  6. Codeforces 1090A - Company Merging - [签到水题][2018-2019 Russia Open High School Programming Contest Problem A]

    题目链接:https://codeforces.com/contest/1090/problem/A A conglomerate consists of n companies. To make m ...

  7. 【CF125E】MST Company(凸优化,最小生成树)

    [CF125E]MST Company(凸优化,最小生成树) 题面 洛谷 CF 题解 第一眼看见就给人丽洁姐那道\(tree\)一样的感觉. 那么二分一个权值,加给所有有一个端点是\(1\)的边, 然 ...

  8. HDU-3974 Assign the task题解报告【dfs序+线段树】

    There is a company that has N employees(numbered from 1 to N),every employee in the company has a im ...

  9. 【CodeForces】790 C. Bear and Company 动态规划

    [题目]C. Bear and Company [题意]给定大写字母字符串,交换相邻字符代价为1,求最小代价使得字符串不含"VK"子串.n<=75. [算法]动态规划 [题解 ...

随机推荐

  1. 451. Sort Characters By Frequency(桶排序)

    Given a string, sort it in decreasing order based on the frequency of characters. Example 1: Input: ...

  2. rbd的image对象数与能写入文件数的关系

    前言 收到一个问题如下: 一个300TB 的RBD,只有7800万的objects,如果存储小文件的话,感觉不够用 对于这个问题,我原来的理解是:对象默认设置的大小是4M一个,存储下去的数据,如果小于 ...

  3. ceph在centos7下一个不容易发现的改变

    在centos6以及以前的osd版本,在启动osd的时候,回去根据ceph.conf的配置文件进行挂载osd,然后进行进程的启动,这个格式是这样的 [osd.0] host = hostname de ...

  4. python编码规范以及推导式的编写

    一.python 的编码规范

  5. 在 macOS 中使用 Podman

    原文链接:https://fuckcloudnative.io/posts/use-podman-in-macos/ Podman 是一个无守护程序与 Docker 命令兼容的下一代 Linux 容器 ...

  6. Markdown进阶

    ### 事项清单 - [x] 拖地 - [x] 擦窗 - [ ] 写作业 - [ ] 交资料 效果 事项清单 [x] 拖地 [x] 擦窗 [ ] 写作业 [ ] 交资料 流程图 graph LR A[ ...

  7. 使用IDM批量抓取音效素材下载

    IDM下载器的站点抓取功能,能够抓取网站上的图片.音频.视频.PDF.压缩包等等文件.更重要的是,能够实现批量抓取操作,省时省力.今天就来看一下,如何用IDM巧妙的批量抓取音效素材. 1.进入音效合辑 ...

  8. 从这三方面优化你的电脑,保持Mac运行流畅

    使用着Mac系统的用户都知道,Mac OS的各方面性能都很好,特别是流畅性,有人说不用清理垃圾也能流畅地使用Mac,但这的确是夸张了.电脑使用的时间长了,它的性能总会越来越退步,这其中有着系统垃圾拖累 ...

  9. celery配置与基本使用

    目录 1.celery配置与基本使用 1.1 安装celery 2.测试celery 2.1启动celery 1.celery配置与基本使用 1.1 安装celery # celery_task/ma ...

  10. miniconda安装及使用

    conda环境配置 安装conda [清华源下载地址](https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/) 官网或百度云网盘下载对应版本 ...