训练视觉相关的神经网络模型时,总是要用到图像的读写。方法有很多,比如matplotlib、cv2、PIL等。下面比较几种读写方式,旨在选出一个最快的方式,提升训练速度。

实验标准

  因为训练使用的框架是Pytorch,因此读取的实验标准如下:

  1、读取分辨率都为1920x1080的5张图片(png格式一张,jpg格式四张)并保存到数组。

  2、将读取的数组转换为维度顺序为CxHxW的Pytorch张量,并保存到显存中(我使用GPU训练),其中三个通道的顺序为RGB。

  3、记录各个方法在以上操作中所耗费的时间。因为png格式的图片大小差不多是质量有微小差异的jpg格式的10倍,所以数据集通常不会用png来保存,就不比较这两种格式的读取时间差异了。

  写入的实验标准如下:

  1、将5张1920x1080的5张图像对应的Pytorch张量转换为对应方法可使用的数据类型数组。

  2、以jpg格式保存五张图片。

  3、记录各个方法保存图片所耗费的时间。

实验情况

cv2

  因为有GPU,所以cv2读取图片有两种方式:

  1、先把图片都读取为一个numpy数组,再转换成保存在GPU中的pytorch张量。

  2、初始化一个保存在GPU中的pytorch张量,然后将每张图直接复制进这个张量中。

  第一种方式实验代码如下:

import os, torch
import cv2 as cv
import numpy as np
from time import time read_path = 'D:test'
write_path = 'D:test\\write\\' # cv2读取 1
start_t = time()
imgs = np.zeros([5, 1080, 1920, 3])
for img, i in zip(os.listdir(read_path), range(5)):
img = cv.imread(filename=os.path.join(read_path, img))
imgs[i] = img
imgs = torch.tensor(imgs).to('cuda')[...,[2,1,0]].permute([0,3,1,2])/255
print('cv2 读取时间1:', time() - start_t)
# cv2保存
start_t = time()
imgs = (imgs.permute([0,2,3,1])[...,[2,1,0]]*255).cpu().numpy()
for i in range(imgs.shape[0]):
cv.imwrite(write_path + str(i) + '.jpg', imgs[i])
print('cv2 保存时间:', time() - start_t)

  实验结果:

cv2 读取时间1: 0.39693760871887207
cv2 保存时间: 0.3560612201690674

  第二种方式实验代码如下:

import os, torch
import cv2 as cv
import numpy as np
from time import time read_path = 'D:test'
write_path = 'D:test\\write\\' # cv2读取 2
start_t = time()
imgs = torch.zeros([5, 1080, 1920, 3], device='cuda')
for img, i in zip(os.listdir(read_path), range(5)):
img = torch.tensor(cv.imread(filename=os.path.join(read_path, img)), device='cuda')
imgs[i] = img
imgs = imgs[...,[2,1,0]].permute([0,3,1,2])/255
print('cv2 读取时间2:', time() - start_t)
# cv2保存
start_t = time()
imgs = (imgs.permute([0,2,3,1])[...,[2,1,0]]*255).cpu().numpy()
for i in range(imgs.shape[0]):
cv.imwrite(write_path + str(i) + '.jpg', imgs[i])
print('cv2 保存时间:', time() - start_t)

  实验结果:

cv2 读取时间2: 0.23636841773986816
cv2 保存时间: 0.3066873550415039

matplotlib

  同样两种读取方式,第一种代码如下:

import os, torch
import numpy as np
import matplotlib.pyplot as plt
from time import time read_path = 'D:test'
write_path = 'D:test\\write\\' # matplotlib 读取 1
start_t = time()
imgs = np.zeros([5, 1080, 1920, 3])
for img, i in zip(os.listdir(read_path), range(5)):
img = plt.imread(os.path.join(read_path, img))
imgs[i] = img
imgs = torch.tensor(imgs).to('cuda').permute([0,3,1,2])/255
print('matplotlib 读取时间1:', time() - start_t)
# matplotlib 保存
start_t = time()
imgs = (imgs.permute([0,2,3,1])).cpu().numpy()
for i in range(imgs.shape[0]):
plt.imsave(write_path + str(i) + '.jpg', imgs[i])
print('matplotlib 保存时间:', time() - start_t)

  实验结果:

matplotlib 读取时间1: 0.45380306243896484
matplotlib 保存时间: 0.768944263458252

  第二种方式实验代码:

import os, torch
import numpy as np
import matplotlib.pyplot as plt
from time import time read_path = 'D:test'
write_path = 'D:test\\write\\' # matplotlib 读取 2
start_t = time()
imgs = torch.zeros([5, 1080, 1920, 3], device='cuda')
for img, i in zip(os.listdir(read_path), range(5)):
img = torch.tensor(plt.imread(os.path.join(read_path, img)), device='cuda')
imgs[i] = img
imgs = imgs.permute([0,3,1,2])/255
print('matplotlib 读取时间2:', time() - start_t)
# matplotlib 保存
start_t = time()
imgs = (imgs.permute([0,2,3,1])).cpu().numpy()
for i in range(imgs.shape[0]):
plt.imsave(write_path + str(i) + '.jpg', imgs[i])
print('matplotlib 保存时间:', time() - start_t)

  实验结果:

matplotlib 读取时间2: 0.2044532299041748
matplotlib 保存时间: 0.4737534523010254

  需要注意的是,matplotlib读取png格式图片获取的数组的数值是在$[0, 1]$范围内的浮点数,而jpg格式图片却是在$[0, 255]$范围内的整数。所以如果数据集内图片格式不一致,要注意先转换为一致再读取,否则数据集的预处理就麻烦了。

PIL

  PIL的读取与写入并不能直接使用pytorch张量或numpy数组,要先转换为Image类型,所以很麻烦,时间复杂度上肯定也是占下风的,就不实验了。

torchvision

  torchvision提供了直接从pytorch张量保存图片的功能,和上面读取最快的matplotlib的方法结合,代码如下:

import os, torch
import matplotlib.pyplot as plt
from time import time
from torchvision import utils read_path = 'D:test'
write_path = 'D:test\\write\\' # matplotlib 读取 2
start_t = time()
imgs = torch.zeros([5, 1080, 1920, 3], device='cuda')
for img, i in zip(os.listdir(read_path), range(5)):
img = torch.tensor(plt.imread(os.path.join(read_path, img)), device='cuda')
imgs[i] = img
imgs = imgs.permute([0,3,1,2])/255
print('matplotlib 读取时间2:', time() - start_t)
# torchvision 保存
start_t = time()
for i in range(imgs.shape[0]):
utils.save_image(imgs[i], write_path + str(i) + '.jpg')
print('torchvision 保存时间:', time() - start_t)

  实验结果:

matplotlib 读取时间2: 0.15358829498291016
torchvision 保存时间: 0.14760661125183105

  可以看出这两个是最快的读写方法。另外,要让图片的读写尽量不影响训练进程,我们还可以让这两个过程与训练并行。

Python图像读写方法对比的更多相关文章

  1. Object-c:两种文件读写的对比

    一.读写方法对比:(主要针对本地读取本地文件) 方式\操作 读 写 非URL方式 stringWithContentsOfFile writeToFile URL方式 stringWithConten ...

  2. Python 3 读写文件的简单方法!

    Python 3 读写文件的简单方法! a = open('test.txt','w') 这行代码创建了一个名为test的文本文档,模式是写入(模式分为三种,w代表写入,r代表阅读,a代表在尾行添加) ...

  3. Python OpenCV 图像相识度对比

    强大的openCV能做什么我就不啰嗦,你能想到的一切图像+视频处理. 这里,我们说说openCV的图像相似度对比, 嗯,说好听一点那叫图像识别,但严格讲, 图像识别是在一个图片中进行类聚处理,比如图片 ...

  4. python——几种截图对比方式!

    本次记录的几种截图对比方式,主要是为了在进行手机自动化测试时,通过截图对比来判断测试的正确性,方式如下: # -*- coding: utf- -*- ''' 用途:利用python实现多种方法来实现 ...

  5. 15.python文件(file)方法详解

    文件的基本操作 文件读写: 文件的读写满足以下3个步骤: 1).打开文件 2).操作数据(读.写) 3).关闭文件 --> 不要忘记 1).打开文件: python的open() 方法用于打开一 ...

  6. python类及其方法

    python类及其方法 一.介绍 在 Python 中,面向对象编程主要有两个主题,就是类和类实例类与实例:类与实例相互关联着:类是对象的定义,而实例是"真正的实物",它存放了类中 ...

  7. NIO与普通IO文件读写性能对比

    最近在熟悉java的nio功能.nio采用了缓冲区的方式进行文件的读写,这一点更接近于OS执行I/O的方式.写了个新旧I/O复制文件的代码,练练手,顺便验证一下两者读写性能的对比,nio是否真的比普通 ...

  8. iPhone开发 数据持久化总结(终结篇)—5种数据持久化方法对比

    iPhone开发 数据持久化总结(终结篇)—5种数据持久化方法对比   iphoneiPhoneIPhoneIPHONEIphone数据持久化 对比总结 本篇对IOS中常用的5种数据持久化方法进行简单 ...

  9. python内置方法

    1. 简介 本指南归纳于我的几个月的博客,主题是 魔法方法 . 什么是魔法方法呢?它们在面向对象的Python的处处皆是.它们是一些可以让你对类添加"魔法"的特殊方法. 它们经常是 ...

随机推荐

  1. SpringSecurity原理

    一.认证的两种方式的介绍 1. 基于Session的认证方式 在之前的单体架构时代,我们认证成功之后都会将信息存入到Session中,然后响应给客户端的是对应的Session中数据的key,客户端会将 ...

  2. Python初学习:简单的练习题

    Python初学习 一些见到那的练习题: 初级难度 设计一重量转换器,输入以g为单位的数字后,返回换算结果以Kg为单位的结果 中级难度 设计一个求直角三角形斜边长的函数,(以两个直角边为参数,求最长边 ...

  3. CSS精灵图与字体图标

    CSS精灵图与字体图标 1. 精灵图 当用户访问一个网站时,需要向服务器发送请求,网页上的每张图像都要经过一次请求才能展现给用户.然而,一个网页中往往会应用很多小的背景图像作为修饰,当网页中的图像过多 ...

  4. 游戏2048的核心算法c#版本的实现

    接触游戏有一段时间了,也写了一些东西,效果还不错,今天没事,我就把2048 c# 版本的实现贴出来,代码已经测试过,可以正常.完美运行.当然了,在网上有很多有关2048的实现方法,但是没有提出到类里面 ...

  5. ES异常处理-NoNodeAvailableException

    1.问题描述 ES client客户端能创建,但是在用客户端操作时报:NoNodeAvailableException[None of the configured nodes are availab ...

  6. AT一万亿港元市值之差,腾讯和阿里到底“差”在哪里?

    很少有人注意到,港股之王已经悄然易主. 2019年底,阿里巴巴赴港二次上市,中国两大互联网巨头终于有了统一的比较口径,同台竞技之下,我们发现一个惊人事实--截止9月5日,港股阿里巴巴市值5.9万亿港元 ...

  7. 真的可以啊,用C语言实现面向对象编程O O P!C语言真的无所不能~

    解释区分一下C语言和OOP 我们经常说C语言是面向过程的,而C++是面向对象的,然而何为面向对象,什么又是面向过程呢?不管怎么样,我们最原始的目标只有一个就是实现我们所需要的功能,从这一点说它们是殊途 ...

  8. 【值得收藏】C语言入门基础知识大全!从C语言程序结构到删库跑路!

    01 C语言程序的结构认识 用一个简单的c程序例子,介绍c语言的基本构成.格式.以及良好的书写风格,使小伙伴对c语言有个初步认识. 例1:计算两个整数之和的c程序: #include main() { ...

  9. spring boot:用swagger3生成接口文档,支持全局通用参数(swagger 3.0.0 / spring boot 2.3.2)

    一,什么是swagger? 1,  Swagger 是一个规范和完整的文档框架, 用于生成.描述.调用和可视化 RESTful 风格的 Web 服务文档 官方网站: https://swagger.i ...

  10. 跟我一起学Redis之看完这篇比常人多会三种类型实战(又搞了几个小时)

    前言 对于Redis而言,很多小伙伴只关注其关键的五大基础类型:string.hash.list.set.sorted set(有序集合),其实还有三种特殊类型在很多应用场景也比较适合使用,分别是:b ...