Hive Join优化
在阐述Hive Join具体的优化方法之前,首先看一下Hive Join的几个重要特点,在实际使用时也可以利用下列特点做相应优化:
1. 只支持等值连接
2. 底层会将写的HQL语句转换为MapReduce,并且reduce会将join语句中除最后一个表外都缓存起来
3. 当三个或多个以上的表进行join操作时,如果每个on使用相同的字段连接时只会产生一个mapreduce
具体的优化建议:
1. 合理的设置map和reduce数量
jvm重用。可在hadoop的mapred-site.xml中设置jvm被重用的次数,参数mapred.job.reuse.jvm.num.tasks
2. 对于任务重没有依赖关系的阶段开启并发执行,设置属性:set hive.exec.parallel=true
3. 查询分区表时,在查询条件中指定分区
4. 尽量使用left semi join 替代in、not in、exists
因为left semi join在执行时,对于左表中指定的一条记录,一旦在右表中找到立即停止扫描,效率更高
5. 当多个表进行查询时,从左到右表的大小顺序应该是从小到大。原因:hive在对每行记录操作时会把其他表先缓存起来,直到扫描最后的表进行计算
6. 对于经常join的表,针对join字段进行分桶,这样在join时不必全表扫描
7. 小表进行mapjoin
如果在join的表中,有一张表数据量较小,可以存于内存中,这样该表在和其他表join时可以直接在map端进行,省掉reduce过程,效率高。设置方式主要分两种:
1)自动方式
set hive.auto.convert.join=true;hive.mapjoin.smalltable.filesize,设置可以mapjoin的表的大小,默认值是25Mb
2)手动方式
select /*+ mapjoin(A)*/ x.a, y.b from t_x x join t_y y on x.id=y.id;
8. 同一种数据的多种处理:从一个数据源产生的多个数据聚合,无需每次聚合都需要重新扫描一次。
例如:任务重需要执行insert overwrite table t_y select * from t_x;和
insert overwrite table t_z select * from t_x;
可以优化成:from t_x insert overwrite table t_y select * insert overwrite table t_z select *
9. join中的数据倾斜处理
set hive.optimize.skewjoin=true;
set hive.skewjoin.key=100000;
当单个reduce节点处理数据阈值,会进行skewjoin,建议设置为平均数据量的2-4倍。
原理:会产生两个job,第一个job会将超过hive.skewjoin.key设置值的记录的key加上一些随机数,将这些相同的key打乱,然后分配到不同的节点上面进行计算。最后再启动一个job,在第一个job处理的基础上(即第一个job的reduce输出结果)再进行处理,将相同的key分发到相同的节点上处理。因为会产生两个job进行处理,在实际使用中还是要注意以及阈值的设置。
10. limit调优
limit语句通常是执行整个语句后返回部分结果。但通过设置参数set hive.limit.optimize.enable=true,将针对查询对元数据进行抽样。同时可能还需要设置以下两个参数:
set hive.limit.row.max.size=10000;设置最小的采样容量
set hive.limit.optimize.limit.file=20;设置最大的采样样本数
这种优化方式存在一个缺点:有可能部分数据永远不会被处理到
关注微信公众号:大数据学习与分享,获取更对技术干货
Hive Join优化的更多相关文章
- hive join 优化 --小表join大表
1.小.大表 join 在小表和大表进行join时,将小表放在前边,效率会高.hive会将小表进行缓存. 2.mapjoin 使用mapjoin将小表放入内存,在map端和大表逐一匹配.从而省去red ...
- Hive Join优化经验
大表x小表 这里可以利用mapjoin,SparkSQL中也有mapjoin或者使用广播变量能达到同样效果,此处描述HQL // 开启mapjoin并设定map表大小 set hive.auto.co ...
- hive join 优化
common join : 即reducer join,瓶颈在shuffle阶段,会产生较大的网络io: map join:即把小表放前面,扫描后放入每个节点的内存,在map阶段进行匹配: 开启map ...
- hive的join优化
“国际大学生节”又称“世界大学生节”.“世界学生日”.“国际学生日”.1946年,世界各国学生代表于布拉格召开全世界学生大会,宣布把每年的11月17日定为“世界大学生节”,以加强全世界大学生的团结和友 ...
- Hive篇---Hive使用优化
一.前述 本节主要描述Hive的优化使用,Hive的优化着重强调一个 把Hive SQL 当做Mapreduce程序去优化 二.主要优化点 1.Hive运行方式:本地模式集群模式 本地模式开启本地模式 ...
- Hive性能优化【严格模式、join优化、Map-Side聚合、JVM重用】
一.严格模式 通过设置以下参数开启严格模式: >set hive.mapred.mode=strict;[默认为nonstrict非严格模式] 查询限制: 1.对于分区表,必须添加where查询 ...
- Hive性能优化
1.概述 继续<那些年使用Hive踩过的坑>一文中的剩余部分,本篇博客赘述了在工作中总结Hive的常用优化手段和在工作中使用Hive出现的问题.下面开始本篇文章的优化介绍. 2.介绍 首先 ...
- Hive任务优化(2)
JOIN优化 1.大多数情况下,Hive会对每对Join连接对象启动一个MapReduce任务. 2.多表关联时,如果每个ON子句都使用相同的连接键的话,那么只会产生一个MapReduce Job. ...
- Hive性能优化上的一些总结
https://blog.csdn.net/mrlevo520/article/details/76339075 1.介绍 首先,我们来看看Hadoop的计算框架特性,在此特性下会衍生哪些问题? 数据 ...
随机推荐
- Black-Lives-Matter-Resources
下载 Black-Lives-Matter-ResourcesBlack-Lives-Matter-Resources 关于最近在美国发生的事件的资源列表 链接 描述 由于(可选) 插入链接 在这里插 ...
- python中remove函数的坑
摘要:对于python中的remove()函数,官方文档的解释是:Remove first occurrence of value.大意也就是移除列表中等于指定值的第一个匹配的元素. 常见用法: a ...
- vue : 无法加载文件 C:\Users\Lenovo\AppData\Roaming\npm\vue.ps1,因为在此系统上禁止运行脚本。
第一步:用管理员身份打开 第二步:执行:set-ExecutionPolicy RemoteSigned 选择Y或A,回车
- git 上传文件到 gitee 码云远程仓库(强制上传)
1.先git init 会出现一个.git的文件夹,有些人可能是隐藏了,工具哪里打开就行了 2.将当前的数据上传到码云,看清楚奥,是当前.git add ./ 这是代表当前的意思 3.将上传的数据备注 ...
- 微服务通信之feign集成负载均衡
前言 书接上文,feign接口是如何注册到容器想必已然清楚,现在我们着重关心一个问题,feign调用服务的时候是如何抉择的?上一篇主要是从读源码的角度入手,后续将会逐步从软件构架方面进行剖析. 一.R ...
- 最新最最最简单的Snagit傻瓜式破解教程(带下载地址)
最新最最最简单的Snagit傻瓜式破解教程(带下载地址) 下载地址 直接滑至文章底部下载 软件介绍 一个非常著名的优秀屏幕.文本和视频捕获.编辑与转换软件.可以捕获Windows屏幕.DOS屏幕:RM ...
- MySQL - 常用三种数据库存储引擎
数据库存储引擎:是数据库底层软件组织,数据库管理系统(DBMS)使用数据引擎进行创建.查询.更新和删除数据.不同的存储引擎提供不同的存储机制.索引技巧.锁定水平等功能,使用不同的存储引擎,还可以获得特 ...
- MeteoInfoLab脚本示例:中尺度气旋散点图
全球长时间序列中尺度气旋数据(http://cioss.coas.oregonstate.edu/eddies/)有netCDF格式,散点数据类型,只有一个很大的维Nobs = 2590938.尝试读 ...
- elasticsearch-安装-centos7- es7.5 搭建
centos6 搭建 参考 https://www.cnblogs.com/php-linux/p/8758788.html 搭建linux虚拟机 https://www.cnblogs ...
- linux(centos8):为prometheus安装grafana(grafana-7.0.3)
一,grafana的用途 1,grafana是什么? grafana 是用 go 语言编写的开源应用, 它的主要用途是大规模指标数据的可视化展现 它是现在网络架构/应用分析中最流行的时序数据展示工具 ...