CF1463-D. Pairs
CF1463-D. Pairs
题意:
有从\(1\)到\(2n\)一共\(2n\)个数字,让你将这\(2n\)个数字分成\(n\)组,每组有两个数字。对于这\(n\)组数字,你可以从中挑选\(x\)组做\(min\)操作,其他的\(n-x\)组中做\(max\)操作,这样就可以得到一个新的数组\(b\); 现在题目给你得到的数组\(b\),问你可以有多少不同的\(x\)使得可以得到数组\(b\)。
思路:
我们从这\(2n\)个数字中去掉数组\(b\)中的数,剩下的就是数组\(a\)中的数。对\(a\),\(b\)数组排序之后,我们现在先枚举每个\(x\)让\(a\)中最大的\(x\)个数字从小到达与\(b\)中最小的x个数字从小到大组合,让\(a\)中剩余的\(n-x\)个数字从小到大与\(b\)中剩余的\(n-x\)个数字从小到大组合(类似于贪心的思想),这个应该是最优的情况,如果这样还是不能通过前\(x\)个取\(min\)后\(n-x\)取\(max\)得到数组\(b\),那么对于这个\(x\)无论你再怎么组合都不可能得到数组\(b\)。
从理论上来说上面这种枚举+贪心的方法肯定能得到最终的答案,但是时间复杂度达到了\(o(n^2)\),这是不能接受的。我们再仔细分析一下,会发现符合要求的\(x\)是连续的、在一个区间里面的,原因如下:
我们假设符合要求的\(x\)的区间为\([L, R]\)。现在我们将\(x=R\)情况对应的组合进行操作可以得到\(x=R+1\)的情况:将数组\(a\)中\(n-x\)个最小的数字中最大的一个数字(称它为\(i\))与数组\(b\)中\(x\)个最小的数字中最小的一个数字(称它为\(j\))进行组合,这时候一定是因为\(i<j\)从而取\(min\)操作时不能得到\(j\)所以不符合条件。而对于之后的\(x=R+1, ..., x=n\)的情况,\(b\)中\(x\)个数字最小的数字中最小的数字是不变的,而\(a\)中\(x\)个最小的数字是不断变小的,所以之后的情况也都是不符合的。同理我们也可以从\(x=L-1,..., x=0\)这些情况中得到同样的结论。
通过这个结论,我们可以通过两次二分查找,找到符合条件的\(x\)区间\([L, R]\)的\(L\)和\(R\),这样就可以将时间复杂度优化到\(o(nlogn)\)。
AC代码
#include <cstdio>
#include <cstring>
#include <algorithm>
const int maxn = 2e5 + 5;
int a[maxn], b[maxn];
int check(int mid, int n) { // 0 suit; 1 l = mid + 1; 2 r = mid - 1;
for (int i = 0; i < mid; i++) {
if (b[i] > a[n - mid + i]) {
return 2;
}
}
for (int i = 0; i < n - mid; i++) {
if (a[i] > b[mid + i]) {
return 1;
}
}
return 0;
}
int main() {
int T, n;
scanf("%d", &T);
while (T--) {
scanf("%d", &n);
for (int i = 0; i < n; i++) {
scanf("%d", &b[i]);
}
std::sort(b, b + n);
int tot = 0, cur = 0;
for (int i = 0; i < 2 * n; i++) {
if (i + 1 == b[cur]) {
cur++;
} else {
a[tot++] = i + 1;
}
}
int l = 0, r = n;
while (l <= r) {
int mid = (l + r) >> 1;
if (check(mid, n) != 1) {
r = mid - 1;
} else {
l = mid + 1;
}
}
int L = l;
l = 0, r = n;
while (l <= r) {
int mid = (l + r) >> 1;
if (check(mid, n) != 2) {
l = mid + 1;
} else {
r = mid - 1;
}
}
int R = r;
printf("%d\n", R - L + 1);
}
return 0;
}
CF1463-D. Pairs的更多相关文章
- [LeetCode] Find K Pairs with Smallest Sums 找和最小的K对数字
You are given two integer arrays nums1 and nums2 sorted in ascending order and an integer k. Define ...
- [LeetCode] Palindrome Pairs 回文对
Given a list of unique words. Find all pairs of distinct indices (i, j) in the given list, so that t ...
- Leetcode-24 Swap Nodes in Pairs
#24. Swap Nodes in Pairs Given a linked list, swap every two adjacent nodes and return its head. For ...
- 【LeetCode】Palindrome Pairs(336)
1. Description Given a list of unique words. Find all pairs of distinct indices (i, j) in the given ...
- 数论 - Pairs(数字对)
In the secret book of ACM, it’s said: “Glory for those who write short ICPC problems. May they live ...
- 24. Swap Nodes in Pairs
24. Swap Nodes in Pairs Given a linked list, swap every two adjacent nodes and return its head. For ...
- Palindrome Pairs -- LeetCode 336
Given a list of unique words. Find all pairs of distinct indices (i, j) in the given list, so that t ...
- 336-Palindrome Pairs
336-Palindrome Pairs Given a list of unique words, find all pairs of distinct indices (i, j) in the ...
- Palindrome Pairs
Given a list of unique words. Find all pairs of distinct indices (i, j) in the given list, so that t ...
- Calculating Stereo Pairs
Calculating Stereo Pairs Written by Paul BourkeJuly 1999 Introduction The following discusses comput ...
随机推荐
- 【EXP】导出数据库dmp文件,只有几张表有数据,剩下的所有表只有表结构没有数据
导出一个dmp,指定的表中有数据,其他的表只有表结构, 有数据的表只有几张,分别是A,B,C三张表,剩下的表都没有数据 思路: 导出一个111.dmp,所有的表都只是表结构 将111.dmp导入到新创 ...
- 【Oracle LISTNER】oracle Listener 宕机解决办法
今天想起了很久没用的oracle库,用plsql尝试连接,发现报超时错误,以为是偶然,多次尝试连接,发现还是超时,于是登录到系统中,查看数据库情况,发现正常查询和修改添加,感觉不是数据库问题,查看监听 ...
- SDUST数据结构 - chap9 排序
判断题: 选择题: 编程题: 7-1 排序: 输入样例: 11 4 981 10 -17 0 -20 29 50 8 43 -5 输出样例: -20 -17 -5 0 4 8 10 29 43 50 ...
- 你这样用过DO循环吗?
DATA: BEGIN OF text, word1(4) TYPE c VALUE 'This', word2(4) TYPE c VALUE 'is', ...
- Request&Response总结
Request&Response Request 请求对象的类视图 请求对象常用方法 获取请求路径 返回值 方法名 说明 String getContextPath() 获取虚拟目录名称 St ...
- java 日期与时间操作
我们先来了解一下基本的概念 日期 2020-11-21 2020-11-22 时间 15:36:43 2020-11-21 15:36:43 时区 北京时间 2020-11-21 15:36:43 东 ...
- consul是什么?
consul概念: consul是用来做注册中心的 他和eureka是一样的 注册中心一般都是集群的形式存在保证高可用 consul像是一个nosql 存储着键值对 可以做存储consul是c/s架构 ...
- Ice系列--基于IceGrid的部署方案
前言 前一篇文章介绍了IceGrid的简单应用.这篇文章来介绍一下它的高端玩法-如何将模板,复制组,知名对象应用于部署方案及其作用. 基于模板的部署方案 之前介绍了xml格式的配置文件通过各种描述符如 ...
- 解决Python内CvCapture视频文件格式不支持问题
解决Python内CvCapture视频文件格式不支持问题 在读取视频文件调用默认的摄像头cv.VideoCapture(0)会出现下面的视频格式问题 CvCapture_MSMF::initStre ...
- 源码 redis 分布式锁
https://github.com/SPSCommerce/redlock-py/tree/master/redlock