摘要:本文主要介绍在 GaussDB(DWS) 中,如何通过 SQL 语句,对分布式死锁进行检测和恢复。

分布式数仓应用场景中,我们经常遇到数据库系统 hang 住的问题,所谓 hang 是指虽然数据库系统还在运行,但部分或全部业务无法正常执行。hang 问题的原因有很多,其中以分布式死锁最为常见,本次主要分享在碰到死锁时,如何快速地解决死锁问题。

GaussDB(DWS) 作为分布式数仓,通过锁机制来实行并发控制,因此也存在产生分布式死锁的可能。虽然分布式死锁无法避免,但幸运的是其提供了多种系统视图,能够保证在分布式死锁发生之后,快速地对死锁进行定位。

本文主要介绍了在 GaussDB(DWS) 中,如何通过 SQL 语句,对分布式死锁进行检测和恢复。本文介绍的方法大致分为 4 步:

1. 收集各节点的锁信息。

2. 构建等待关系。

3. 检测循环等待。

4. 中止事务以消除死锁。

本文介绍的方法使用简单,门槛低,可以确保在分布式死锁发生之后,快速解决问题,恢复业务。

通过 SQL 语句进行分布式死锁的检测与消除

分布式死锁和单节点死锁的比较

单节点死锁

单节点死锁是指,死锁中的所有锁等待信息来自同一个节点,例如:

-- 事务 transaction1
-- 所在节点:CN1 BEGIN; TRUNCATE t1;
EXECUTE DIRECT ON(DN1) 'SELECT * FROM t2'; COMMIT; -- 事务 transaction2
-- 所在节点:CN1 BEGIN; TRUNCATE t2;
EXECUTE DIRECT ON(DN2) 'SELECT * FROM t1'; COMMIT;

假设上述两个事务的执行顺序如下:

1. [transaction1] TRUNCATE t1

2. [transaction2] TRUNCATE t2

3. [transaction1] EXECUTE DIRECT ON(DN1) 'SELECT * FROM t2'

4. [transaction2] EXECUTE DIRECT ON(DN2) 'SELECT * FROM t1'

该执行顺序会导致死锁的产生。由于事务 transaction1 和 transaction2 都在 CN1 上执行,死锁中的所有锁等待信息都在 CN1 上,因此该死锁为单节点死锁。

GaussDB(DWS) 支持自动处理单节点死锁。当某个节点上的多个事务陷入循环等待时,数据库系统会自动将其中一个事务中止,从而消除死锁。

分布式死锁

分布式死锁是指,死锁中的锁等待信息来自不同节点。例如:

-- 事务 transaction1
-- 所在节点:CN1 BEGIN; TRUNCATE t1;
EXECUTE DIRECT ON(DN1) 'SELECT * FROM t2'; COMMIT; -- 事务 transaction2
-- 所在节点:CN2 BEGIN; TRUNCATE t2;
EXECUTE DIRECT ON(DN2) 'SELECT * FROM t1'; COMMIT;

本例与上一节中的例子相比,只有事务 transaction2 的所在节点从 CN1 改为了 CN2。

假设两个事务的执行顺序和上一节中的执行顺序一致,还是会产生死锁,死锁中的锁等待信息如下:

这就是一个典型的分布式死锁,单独看 CN1 或 CN2 上的锁等待信息,都看不出来有死锁,但将多个节点的锁等待信息放到一起看,就能找到有循环等待的现象。

发生分布式死锁时,陷入死锁的事务全部都无法继续执行下去,只有其中一个事务锁等待超时,剩余事务才能继续执行。默认情况下,锁等待超时时间是 20 分钟。

分布式死锁的检测与消除

当我们观察到数据库系统出现 hang 问题时,我们需要通过 SQL 语句检测分布式死锁,如果发现确实存在分布式死锁,还需要对死锁进行消除。接下来以之前的分布式死锁为例,介绍分布式死锁的检测和消除的方法。

收集各节点的锁信息

为了检测分布式死锁,首先需要获得各节点的锁信息。GaussDB(DWS) 中可以通过 PG_LOCKS 视图查询当前节点的锁信息,因此可以通过 EXECUTE DIRECT 语句在所有节点查询 PG_LOCKS 视图,并收集到当前节点中。

注意此处有一个细节,PG_LOCKS 视图中,很多信息是以 OID 类型给出的,例如一个锁加在一个表上,PG_LOCKS 视图会给出表的 OID。由于同一个表在各节点中的 OID 不一定相同,因此不能通过 OID 来标识一个表。在收集锁信息时,需要先将表的 OID 转换成 SCHEMA 名加表名。其它 OID 信息例如分区 OID 等也同理,需要转化为对应的名字。

执行附件中的示例代码 pgxc_locks.sql,就可以收集到各节点的锁信息:

   locktype    |   nodename   | datname  | usename | nspname | relname | partname | page | tuple | virtualxid | transactionid | virtualtransaction |        mode         | granted | client_addr | application_name |       pid       |         xact_start         |        query_start         |        state        |     query_id      |                        query
---------------+--------------+----------+---------+---------+---------+----------+------+-------+------------+---------------+--------------------+---------------------+---------+-------------+------------------+-----------------+----------------------------+----------------------------+---------------------+-------------------+-----------------------------------------------------
virtualxid | cn_5002 | postgres | tyx_1 | | | | | | 12/94 | | 12/94 | ExclusiveLock | t | | gsql | 140110481323776 | 2020-12-25 17:18:54.238933 | 2020-12-25 17:19:37.715447 | active | 0 | EXECUTE DIRECT ON(dn_6003_6004) 'SELECT * FROM t1';
virtualxid | cn_5002 | postgres | tyx_1 | | | | | | 9/298 | | 9/298 | ExclusiveLock | t | ::1/128 | cn_5001 | 140110672164608 | 2020-12-25 17:18:40.478704 | 2020-12-25 17:18:40.479682 | idle in transaction | 0 | TRUNCATE t1;
virtualxid | cn_5002 | postgres | tyx_1 | | | | | | 6/161 | | 6/161 | ExclusiveLock | t | | WLMArbiter | 140110762325760 | 2020-12-25 17:20:18.613815 | 2020-12-25 16:53:35.027585 | active | 0 | WLM arbiter sync info by CCN and CNs
virtualxid | cn_5002 | postgres | tyx_1 | | | | | | 5/162 | | 5/162 | ExclusiveLock | t | | WorkloadMonitor | 140110779119360 | 2020-12-25 17:20:27.16458 | 2020-12-25 16:53:35.027217 | active | 0 | WLM monitor update and verify local info
virtualxid | cn_5002 | postgres | tyx_1 | | | | | | 3/325 | | 3/325 | ExclusiveLock | t | | workload | 140110846744320 | 2020-12-25 17:20:25.372654 | 2020-12-25 16:53:35.02741 | active | 72339069014641297 | WLM fetch collect info from data nodes
advisory | cn_5002 | postgres | tyx_1 | | | | | | | | 12/94 | ShareLock | t | | gsql | 140110481323776 | 2020-12-25 17:18:54.238933 | 2020-12-25 17:19:37.715447 | active | 0 | EXECUTE DIRECT ON(dn_6003_6004) 'SELECT * FROM t1';
relation | cn_5002 | postgres | tyx_1 | public | t1 | | | | | | 9/298 | AccessExclusiveLock | t | ::1/128 | cn_5001 | 140110672164608 | 2020-12-25 17:18:40.478704 | 2020-12-25 17:18:40.479682 | idle in transaction | 0 | TRUNCATE t1;
relation | cn_5002 | postgres | tyx_1 | public | t1 | | | | | | 12/94 | AccessShareLock | f | | gsql | 140110481323776 | 2020-12-25 17:18:54.238933 | 2020-12-25 17:19:37.715447 | active | 0 | EXECUTE DIRECT ON(dn_6003_6004) 'SELECT * FROM t1';
transactionid | cn_5002 | postgres | tyx_1 | | | | | | | 10269 | 12/94 | ExclusiveLock | t | | gsql | 140110481323776 | 2020-12-25 17:18:54.238933 | 2020-12-25 17:19:37.715447 | active | 0 | EXECUTE DIRECT ON(dn_6003_6004) 'SELECT * FROM t1';
transactionid | cn_5002 | postgres | tyx_1 | | | | | | | 10266 | 9/298 | ExclusiveLock | t | ::1/128 | cn_5001 | 140110672164608 | 2020-12-25 17:18:40.478704 | 2020-12-25 17:18:40.479682 | idle in transaction | 0 | TRUNCATE t1;
relation | cn_5002 | postgres | tyx_1 | public | t2 | | | | | | 12/94 | AccessExclusiveLock | t | | gsql | 140110481323776 | 2020-12-25 17:18:54.238933 | 2020-12-25 17:19:37.715447 | active | 0 | EXECUTE DIRECT ON(dn_6003_6004) 'SELECT * FROM t1';
virtualxid | dn_6001_6002 | postgres | tyx_1 | | | | | | 17/433 | | 17/433 | ExclusiveLock | t | ::1/128 | cn_5001 | 140552375822080 | 2020-12-25 17:18:40.478704 | 2020-12-25 17:18:50.513948 | idle in transaction | 0 | TRUNCATE t1;
virtualxid | dn_6001_6002 | postgres | tyx_1 | | | | | | 23/692 | | 23/692 | ExclusiveLock | t | ::1/128 | cn_5002 | 140552359040768 | 2020-12-25 17:18:54.238933 | 2020-12-25 17:18:56.830053 | idle in transaction | 0 | TRUNCATE t2;
virtualxid | dn_6001_6002 | postgres | tyx_1 | | | | | | 2/1607 | | 2/1607 | ExclusiveLock | t | | workload | 140552945264384 | | 2020-12-25 16:53:35.041283 | active | 0 | WLM fetch collect info from data nodes
transactionid | dn_6001_6002 | postgres | tyx_1 | | | | | | | 10266 | 17/433 | ExclusiveLock | t | ::1/128 | cn_5001 | 140552375822080 | 2020-12-25 17:18:40.478704 | 2020-12-25 17:18:50.513948 | idle in transaction | 0 | TRUNCATE t1;
relation | dn_6001_6002 | postgres | tyx_1 | | | | | | | | 23/692 | AccessExclusiveLock | t | ::1/128 | cn_5002 | 140552359040768 | 2020-12-25 17:18:54.238933 | 2020-12-25 17:18:56.830053 | idle in transaction | 0 | TRUNCATE t2;
relation | dn_6001_6002 | postgres | tyx_1 | | | | | | | | 17/433 | AccessExclusiveLock | t | ::1/128 | cn_5001 | 140552375822080 | 2020-12-25 17:18:40.478704 | 2020-12-25 17:18:50.513948 | idle in transaction | 0 | TRUNCATE t1;
relation | dn_6001_6002 | postgres | tyx_1 | public | t2 | | | | | | 23/692 | ShareLock | t | ::1/128 | cn_5002 | 140552359040768 | 2020-12-25 17:18:54.238933 | 2020-12-25 17:18:56.830053 | idle in transaction | 0 | TRUNCATE t2;
relation | dn_6001_6002 | postgres | tyx_1 | public | t2 | | | | | | 23/692 | AccessExclusiveLock | t | ::1/128 | cn_5002 | 140552359040768 | 2020-12-25 17:18:54.238933 | 2020-12-25 17:18:56.830053 | idle in transaction | 0 | TRUNCATE t2;
省略若干行
(55 rows)

构建等待关系

收集到各节点的锁信息之后,就可以开始构建等待关系了。

事务 A 等待事务 B,需要满足 3 个条件:

1. 两个事务加锁的资源相同(同一个表、同一个分区、同一个页面或同一个元组等)。特别注意,如果事务 A 对 DN1 的 t1 表的加锁,事务 B 对 DN2 的 t1 表的加锁,则我们认为它们加锁的资源不同,只有同一节点上的同一资源才被认为是相同的资源。

2. 事务 B 已经持有锁,而事务 A 还未持有锁。

3. 事务 A 和事务 B 申请的锁的级别互斥。

通过对上一步收集到的锁信息进行处理,就可以构建出事务的等待关系。

执行附件中的示例代码 pgxc_locks_wait.sql,就可以获得等待关系:

 locktype | nodename | datname  | acquire_lock_pid |  hold_lock_pid  |                           acquire_lock_event                            |                    hold_lock_event
----------+----------+----------+------------------+-----------------+-------------------------------------------------------------------------+--------------------------------------------------------
relation | cn_5001 | postgres | 140508814374656 | 140508792350464 | usename : tyx_1 +| usename : tyx_1 +
| | | | | nspname : public +| nspname : public +
| | | | | relname : t2 +| relname : t2 +
| | | | | partname : +| partname : +
| | | | | page : +| page : +
| | | | | tuple : +| tuple : +
| | | | | virtualxid : +| virtualxid : +
| | | | | transactionid : +| transactionid : +
| | | | | virtualtransaction: 11/13 +| virtualtransaction: 12/1323 +
| | | | | mode : AccessShareLock +| mode : AccessExclusiveLock +
| | | | | client_addr : +| client_addr : ::1/128 +
| | | | | application_name : gsql +| application_name : cn_5002 +
| | | | | xact_start : 2020-12-25 17:18:40.478704 +| xact_start : 2020-12-25 17:18:54.238933 +
| | | | | query_start : 2020-12-25 17:19:23.0923 +| query_start : 2020-12-25 17:18:54.239319 +
| | | | | state : active +| state : idle in transaction +
| | | | | query_id : 0 +| query_id : 0 +
| | | | | query : EXECUTE DIRECT ON(dn_6001_6002) 'SELECT * FROM t2';+| query : TRUNCATE t2; +
| | | | | ------------------------------------------------------ | ------------------------------------------------------
relation | cn_5002 | postgres | 140110481323776 | 140110672164608 | usename : tyx_1 +| usename : tyx_1 +
| | | | | nspname : public +| nspname : public +
| | | | | relname : t1 +| relname : t1 +
| | | | | partname : +| partname : +
| | | | | page : +| page : +
| | | | | tuple : +| tuple : +
| | | | | virtualxid : +| virtualxid : +
| | | | | transactionid : +| transactionid : +
| | | | | virtualtransaction: 12/94 +| virtualtransaction: 9/298 +
| | | | | mode : AccessShareLock +| mode : AccessExclusiveLock +
| | | | | client_addr : +| client_addr : ::1/128 +
| | | | | application_name : gsql +| application_name : cn_5001 +
| | | | | xact_start : 2020-12-25 17:18:54.238933 +| xact_start : 2020-12-25 17:18:40.478704 +
| | | | | query_start : 2020-12-25 17:19:37.715447 +| query_start : 2020-12-25 17:18:40.479682 +
| | | | | state : active +| state : idle in transaction +
| | | | | query_id : 0 +| query_id : 0 +
| | | | | query : EXECUTE DIRECT ON(dn_6003_6004) 'SELECT * FROM t1';+| query : TRUNCATE t1; +
| | | | | ------------------------------------------------------ | ------------------------------------------------------
(2 rows)

等待关系判环

构建出事务的等待关系之后,就可以通过检查等待关系是否成环,来判断当前是否有分布式死锁。

一般情况下,等待关系不会太多,通过观察就可以判断出当前有无分布式死锁。通过观察上一节中构建的等待信息,可以很容易地判断出事务 transaction1 和 transaction2 发生了循环等待,即产生了死锁。

消除死锁

上一步最终可能会找到等待关系中的一个或多个环,对于每个环,需要中止环中的一个事务,才能消除死锁。至于应该选择环中的哪个事务进行中止,需要我们从事务的重要性、已执行时间等多方面进行考虑,最终选择一个对业务影响最小的事务进行中止。

总结

通过 SQL 语句,我们可以很方便地处理分布式死锁。当我们在实际业务中遇到数据库系统 hang 住的问题时,可以借助本文提供的方法,检查 hang 问题是否是分布式死锁引起的,如果问题确实是由分布式死锁引起的,还可以通过中止某个陷入死锁的事务,来快速恢复业务。

附件下载: lock.zip 2.29KB

本文分享自华为云社区《如何通过SQL进行分布式死锁的检测与消除》,原文作者:tyxxjtu。

点击关注,第一时间了解华为云新鲜技术~

仅4步,就可通过SQL进行分布式死锁的检测与消除的更多相关文章

  1. (转载)一步一步学Linq to sql系列文章

    现在Linq to sql的资料还不是很多,本人水平有限,如果有错或者误导请指出,谢谢. 一步一步学Linq to sql(一):预备知识 一步一步学Linq to sql(二):DataContex ...

  2. 一步一步学Linq to sql(五):存储过程

    普通存储过程 首先在查询分析器运行下面的代码来创建一个存储过程: create proc sp_singleresultset as set nocount on select * from cust ...

  3. SQL SERVER 分布式事务(DTC)

    BEGIN DISTRIBUTED TRANSACTION指定一个由 Microsoft 分布式事务处理协调器 (MS DTC) 管理的 Transact-SQL 分布式事务的起始. 语法BEGIN ...

  4. sqlserver 抓取所有执行语句 SQL语句分析 死锁 抓取

    原文:sqlserver 抓取所有执行语句 SQL语句分析 死锁 抓取 在多人开发中最头疼的是人少事多没有时间进行codereview,本来功能都没时间写,哪有时间来开会细细来分析代码.软件能跑就行, ...

  5. 解决SQL server2005数据库死锁的经验心得

    前段时间提到的"sql server 2005 死锁解决探索",死锁严重,平均每天会发生一次死锁,在解决和处理SQL server2005死锁中查了很多资料和想了很多办法,后来我们 ...

  6. 监控SQL Server正在执行的SQL语句和死锁情况

    原文:监控SQL Server正在执行的SQL语句和死锁情况 SELECT [Individual Query] = SUBSTRING(qt.TEXT, er.statement_start_off ...

  7. 面试官:请用SQL模拟一个死锁

    文章首发于公众号:BiggerBoy 有读者说面试被问到怎么用SQL模拟数据库死锁? 这位读者表示对Java中的死锁还是略知一二的,但是突然用SQL写死锁的案例之前还真没遇到过,这个问题没答上来.所以 ...

  8. DBArtist之Oracle入门第3步: 安装配置PL/SQL Developer

    操作系统:            WINDOWS 7 (64位) 数据库:               Oracle 11gR2 (64位) PL/SQL Developer :    PL/SQL ...

  9. Android仅2步实现 滚粗 汉堡导航栏效果~ 全新底部导航交互(滑动隐藏)

    本文同步自wing的地方酒馆 布吉岛大家有木有看这一篇文章,再见,汉堡菜单,我们有了新的 Android 交互设计方案 本库下载地址:https://github.com/githubwing/Bye ...

随机推荐

  1. 团队作业第六次——Beta冲刺

    这个作业属于哪个课程 软件工程 (福州大学至诚学院 - 计算机工程系) 这个作业要求在哪里 Beta 冲刺 这个作业的目标 团队进行Beta冲刺 作业正文 正文 其他参考文献 无 代码规范与计划 代码 ...

  2. PyQt(Python+Qt)学习随笔:QToolBox工具箱的currentItemName和tabSpacing属性

    老猿Python博文目录 专栏:使用PyQt开发图形界面Python应用 老猿Python博客地址 在Designer中,toolBox的属性中有currentItemName和tabSpacing属 ...

  3. HashMap稍微详细的理解

    此文章用来记录hashmap的一些特点(在学习中的所了解的,如有不足,请指正) 什么是hash表 概念 先来一段百度百科的的解释 散列表(Hash table,也叫哈希表),是根据关键码值(Key v ...

  4. HTML 实战生成一张页面

    1 HTML简介 1.1 解释 HTML是用来描述网页的一种语言. HTML即超文本标记语言(Hyper Text Markup Language): HTML不是一种编程语言,而是一种标记语言(ma ...

  5. scrapy爬虫登录edusrc查看漏洞列表

    scrapy登录界面的难点在于登录时候的验证码,我们通过使用scrapy.FormRequest向目标网站提交数据(表单提交),同时将验证码显示在本地,手动输入,进而登录. 验证码是类似于这种的,才可 ...

  6. Scrum 冲刺 第五篇

    Scrum 冲刺 第五篇 每日会议照片 昨天已完成工作 队员 昨日完成任务 黄梓浩 初步完成app项目架构搭建 黄清山 完成部分个人界面模块数据库的接口 邓富荣 完成后台首页模块数据库的接口 钟俊豪 ...

  7. cglib、orika、spring等bean copy工具性能测试和原理分析

    简介 在实际项目中,考虑到不同的数据使用者,我们经常要处理 VO.DTO.Entity.DO 等对象的转换,如果手动编写 setter/getter 方法一个个赋值,将非常繁琐且难维护.通常情况下,这 ...

  8. 海量数据架构下如何保证Mycat的高可用?

    写在前面 在<冰河,能讲讲Mycat如何实现MySQL的读写分离吗?>一文中,我们实现了使用Mycat实现MySQL的读写分离.然而,此时的Mycat只有一个节点,如果Mycat节点宕机了 ...

  9. logstash导入DNS解析数据到es中,中间有filebeat

    这个过程中,主要用logstash处理数据的时候不好处理. 在logstash-sample.conf这个配置文件中的配置,我用这个监控filebeat的5044端口 # Sample Logstas ...

  10. Day1 字符串格式化

    1.占位符方式:占位符: %d 整数 %012d 数字位数至少长度为12位,不足的前面加0填充. >>> 'Hello,%s,%012d' % ('a',12345678901234 ...