[Swust OJ 247]--皇帝的新衣(组合数+Lucas定理)
题目链接:http://acm.swust.edu.cn/problem/0247/
城市是一个N*M的矩形,(N+1)*(M+1)条街把城市分成了N*M块。国王从左下角出发,每次只能向右或向上走,右上角是终点。
请你帮帮可怜的宰相。
多组测试数据 0 0 0结束。
|
2 3 97
20 40 37
0 0 0
|
|
10
32
|
Lucas定理用来求C(a,b)mod p的值,其中p为素数。
数学表达式为:
Lucas(a,b,q)=C(a%q,b%q)*Lucas(a/p,b/p,p);
Lucas(a,0,q)=0;
模运算与基本四则运算有些相似,但是除法例外。其规则如下:
(a + b) % p = (a % p + b % p) % p (1)
(a - b) % p = (a % p - b % p) % p (2)
(a * b) % p = (a % p * b % p) % p (3)
a ^ b % p = ((a % p)^b) % p (4)
代码如下:
#include <iostream>
#include <cstring>
#include <algorithm>
#define maxn 405
using namespace std;
long long dp[maxn][maxn], n, m, p;
long long Lucas(long long n, long long m, long long p){
//Lucas定理
if (n <= p && m <= p)
return dp[n][m];
else
return (Lucas(n / p, m / p, p)*dp[n%p][m%p]) % p;
} //杨辉三角求组合数
void init(){
int i, left, right;
for (i = ; i <= p; i++){
dp[i][] = dp[i][i] = ;
left = , right = i - ;
while (left <= right){
dp[i][left] = (dp[i - ][left - ] + dp[i - ][left]) % p;
dp[i][right--] = dp[i][left++];//组合数性质dp[i][j]=dp[i][i-j];
}
}
}
int main(){
while (cin >> n >> m >> p && n && m && p){
memset(dp, , sizeof(dp));
init();
cout << Lucas(n + m, min(n, m), p) << endl;
}
return ;
}
乱搞的Java代码如下:
import java.math.*;
import java.io.*;
import java.util.*;
public class Main{
static int DP[][] = new int[401][401];
static int p;
public static void main(String[] args)
{
Scanner cin = new Scanner(System.in);
int a, b;
while (cin.hasNext()){
a = cin.nextInt();
b = cin.nextInt();
p = cin.nextInt();
if (a == 0)
break;
initDp();
System.out.println(sloveRe(a + b, b > a ? a : b));
}
}
private static void initDp(){
int i, j;
for (i = 0; i <= p; i++){
DP[i][0] = 1;
}
for (i = 1; i <= p; i++){
for (j = 1; j <= p; j++){
DP[i][j] = (DP[i - 1][j] + DP[i - 1][j - 1]) % p;
}
}
}
private static int sloveRe(int n, int m){
if (n <= p&&m <= p)
return DP[n][m];
else
return (sloveRe(n / p, m / p)*DP[n%p][m%p]) % p;
}
}
[Swust OJ 247]--皇帝的新衣(组合数+Lucas定理)的更多相关文章
- uoj86 mx的组合数 (lucas定理+数位dp+原根与指标+NTT)
uoj86 mx的组合数 (lucas定理+数位dp+原根与指标+NTT) uoj 题目描述自己看去吧( 题解时间 首先看到 $ p $ 这么小还是质数,第一时间想到 $ lucas $ 定理. 注意 ...
- 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理
4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 95 Solved: 33[Submit][Statu ...
- luogu4345 [SHOI2015]超能粒子炮·改(组合数/Lucas定理)
link 输入\(n,k\),求\(\sum_{i=0}^k{n\choose i}\)对2333取模,10万组询问,n,k<=1e18 注意到一个2333这个数字很小并且还是质数这一良好性质, ...
- 【(好题)组合数+Lucas定理+公式递推(lowbit+滚动数组)+打表找规律】2017多校训练七 HDU 6129 Just do it
http://acm.hdu.edu.cn/showproblem.php?pid=6129 [题意] 对于一个长度为n的序列a,我们可以计算b[i]=a1^a2^......^ai,这样得到序列b ...
- 组合数(Lucas定理) + 快速幂 --- HDU 5226 Tom and matrix
Tom and matrix Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5226 Mean: 题意很简单,略. analy ...
- 【组合数+Lucas定理模板】HDU 3037 Saving
acm.hdu.edu.cn/showproblem.php?pid=3037 [题意] m个松果,n棵树 求把最多m个松果分配到最多n棵树的方案数 方案数有可能很大,模素数p 1 <= n, ...
- CodeForces-451E:Devu and Flowers (母函数+组合数+Lucas定理)
Devu wants to decorate his garden with flowers. He has purchased n boxes, where the i-th box contain ...
- HDU3037Saving Beans(组合数+lucas定理)
Problem Description Although winter is far away, squirrels have to work day and night to save beans. ...
- 组合数取模Lucas定理及快速幂取模
组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1) , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...
随机推荐
- Java判断字符串是中文还是英文
在做开发的时候我们经常需要用到根据某个字符或者字符串来判断其是中文还是英文,从而做相应的处理,其实不难,大多数人们都是用到正则来判断的,下面小贝就给大家分享一下Java判断字符串是中文还是英文 推荐文 ...
- 常见排序算法C++总结
看了总结图,我这里就总结一下 直接插入排序,冒泡排序,快速排序,堆排序和归并排序,使用C++实现 重新画了总结图 直接插入排序 整个序列分为有序区和无序区,取第一个元素作为初始有序区,然后第二个开始, ...
- 关于 OnCloseQuery: 顺序、不能关机等(所有的windows的广播消息都是逐窗口传递的)——如果一个窗体的OnCloseQuery事件中如果写了代码那么WM_QUERYENDSESSION消息就传不过去了msg.result会返回0,关机事件也就停止了
系统关闭窗体的事件顺序为: OnCloseQuery ----> OnClose ----> OnDestroy 下面的代码说明问题: unit Unit3; interface uses ...
- TMT行业分析师
诚聘英才 - 传媒梦工场 TMT行业分析师 工作经验: 2年以上 发布日期: 2013-01-04 最低学历: 本科 管理经验: 否 工作性质: 全职 招聘人数: 1人 职位类别: 金融 ...
- nodejs学习笔记_nodejs和PHP在基础架构上的差别--共享状态的并发
绝大多数对于Node.js的讨论都把关注点放在了处理高并发能力上,做开发的时候一定要明确node内部做出的权衡,以及node应用性能好的原因. node 为javascript引入了一个复杂的概念,: ...
- 利用copy函数简单快速输出/保存vector向量容器中的数据
如果要输出vector中的数据我们可以通过循环语句输出,更加简便的方法是利用copy函数直接输出,例子: #include "stdafx.h" #include <iost ...
- Android 建造者(Builder)模式
关于 Builder 模式 详述:http://blog.csdn.net/jjwwmlp456/article/details/39890699 先来张图 看到 Android 中 使用了 Bui ...
- Java thread中对异常的处理策略
转载:http://shmilyaw-hotmail-com.iteye.com/blog/1881302 前言 想讨论这个话题有一段时间了.记得几年前的时候去面试,有人就问过我一个类似的问题.就是j ...
- 【Linux命令】Ubuntu14.04+QT5.2配置mysql
安装qt: 官网下载qt5.2.1:qt-opensource-linux-x64-5.2.1.run 直接命令行运行:./qt-opensource-linux-x64-5.2.1.run 选择安装 ...
- Java中 hashCode()方法详解
先来看下Object源码里hashcode方法: /** * Returns a hash code value for the object. This method is * s ...