A

  树形dp是看起来比较靠谱的做法 , 但是转移的时候不全面就会出错 , 从贪心的角度出发 , 首先让第一量车走最长路,

  然后就会发现递归结构 , 得到递归式 f[i] = ( f[i-2] + f[i-3] + .. + f[1]) * 2 + 1;

  贪心的正确性 , 可以根据dp方程证出来 , 不过还是蛮显然的...

  

 #define maxn 1000100
#define mod 1000000007
#define INF (1ll<<60)
llong dp[maxn][];
class TrafficCongestion {
public:
int theMinCars(int);
}; llong dfs(int h,int s)
{
int i,j;
llong resa,resb,resc;
dp[][] = ;
dp[][] = ;
dp[][] = ;
for ( i= ; i<=h ; i++ )
for ( j= ; j< ; j++ )
{
resa = resb =resc = INF;
if (j==)
{
resa = dp[i-][] + dp[i-][] + 1ll; resa %= mod;
resb = dp[i-][] + dp[i-][]; resb %= mod;
resc = dp[i-][] + dp[i-][]; resc %= mod;
}
else if (j==)
{
resa = dp[i-][] * 2LL % mod;
resb = dp[i-][] + dp[i-][]; resb %= mod;
}
else if (j==)
{
resa = dp[i-][] + dp[i-][]; resa %= mod;
resb = dp[i-][]*2LL + 1LL; resb %= mod;
}
resa = min(resa,resb);
resa = min(resa,resc);
dp[i][j] = resa;
}
return dp[h][s];
}
int TrafficCongestion::theMinCars(int h)
{
memset(dp,-,sizeof(dp));
llong ans = dfs(h,);
return ans;
}

B

  假设每个value只有一个 , 那么只要构造递增次数为K的序列就行了 ,  构造方法可以是:先取前k个作为k个递增序列的起点 ,

  剩下的就是n-k个元素分配给,k个集合求方案数 , 但是这样无法保证每个序列递增 ,不过还是给我们一个启示:按递增顺序考虑.

  定义dp[i][j] 为 前i个元素 , 已经构造了j个递增序列的方案数.

  dp[i+1][j] = dp[i][j] *  j + dp[i][j-1]

  拓展到每个value可能出现多个的情况时 ,转移要乘上组合数.

 using namespace std;
#define maxn 1300
typedef long long llong;
const llong mod = ;
class LISNumber {
public:
int count(vector <int>, int);
};
llong dp[][maxn],c[maxn][maxn];
int n,sum[maxn];
int LISNumber::count(vector <int> card, int K)
{
int i,j,k;
n = card.size();
for ( i= ; i<n ; i++ ) sum[i] = i? sum[i-]+card[i] : card[i]; for ( i=,c[][]= ; i<maxn ; i++ )
for ( j= ; j<=i ; j++ )
{
c[i][j] = j?c[i-][j-]+c[i-][j] : ;
c[i][j] %= mod;
} memset(dp,,sizeof(dp));
dp[][] = ;
for ( i= ; i<n ; i++ )
for ( j= ; j<=sum[i] && j<=K ; j++ ) if (dp[i][j])
{
// printf("dp[%d][%d]=%lld\n",i,j,dp[i][j]);
for ( k= ; k<=j && k<=card[i] ; k++ )
{
llong pos,add,x;
add = card[i]-k;
pos = ( (i?sum[i-]:) + ) - j + k;
x = c[j][k] * c[pos+add-][pos-] %mod * dp[i][j] % mod;
// printf("add to dp[%d][%d] ,k=%d: %lld\n",i+1,(int)(j+add),k,x);
dp[i+][j+add] += x;
dp[i+][j+add] %= mod;
}
}
// for ( i=0 ; i<=n ; i++ )
// for ( j=0 ; j<=K ; j++ ) if (dp[i][j]) printf("dp[%d][%d]=%lld\n",i,j,dp[i][j]);
return dp[n][K] % mod;
}

C

  (计算几何不会 , 看题解撸了好久..)

  判断点是否在三角形内部或边界:

    顺时针地考虑每条边e , 如果黑点在e下方 , 则在内部 , 否则在外部 , 用叉积判断 , 注意叉积为0的时候 ,是恰好在边界上,应判为在内部;

  统计方案数:

    为了不重复统计 , 3元组(a,b,c)应该为升序 .

    于是有了朴素的办法: 枚举三元组.

    然后考虑: 对于确定的a , b有一个取值范围来保证 e(a,b) 这条边合法 , c也有一个取值范围来保证 e(c,a) 这条边合法 ,

    用f(i)来表示对于点i , 能取的编号最大的点 , 很显然f(i)是递增的 , 然后根据单调性 , 利用"部分和"的技巧 , 可以o(n)统计方案数.

 #define maxn (58585*4+100)
class EnclosingTriangle {
public:
long long getNumber(int, vector <int>, vector <int>);
}; struct node {
llong x,y;
};node e[maxn];
int t,f[maxn]; llong xmult(llong x0,llong y0,llong x1,llong y1) {
return x0*y1 - x1*y0;
} llong sum , add[maxn] , addid[maxn] , front , tail , c; int check(int A,int B,vector<int>x,vector<int> y) {
node a = e[A];
node b = e[B%t];
for (int i= ; i<(int)x.size() ; i++ ) {
if (xmult(a.x-x[i],a.y-y[i],b.x-x[i],b.y-y[i])>) return ;
}
return ;
} void sub(llong d) {
sum -= (tail-front) * d;
// printf("sub: cnt=%lld cut:%lld sum:%lld\n",tail-front,(tail-front)*d,sum);
while (front<tail && add[front]-c<) {
sum -= add[front]-c;
// printf("cut:%lld count:%lld otq:%lld\n",add[front]-c,add[front],addid[front]);
front++;
}
} void ins(int b) {
add[tail] = min(f[b]+,t);
addid[tail] = b;
sum += add[tail++]-c;
} long long EnclosingTriangle::getNumber(int m, vector <int> x, vector <int> y) {
for (int i= ; i< ; i++ ) {
for (int j= ; j<m ; j++ ) {
llong ox[] = {,j,m,m-j};
llong oy[] = {j,m,m-j,};
e[t++] = (node){ox[i],oy[i]};
}
}
for (int i=,j= ; i<t ; i++ ) {
while (check(i,j,x,y)) j++;
j--;
f[i] = j;
// printf ("f[%d]=%d\n",i,j);
}
c = ;
llong res = ;
for (int a=,b= ; a<t ; a++ ) {
llong d = ; while (front<tail && addid[front]<=a) {
sum -= add[front]-c;
// printf("front:%lld tail:%lld cut:%lld sum:%lld\n",front,tail,add[front]-c,sum);
front++;
}
while (f[c]<a+t && c+<t) c++,d++;
if (f[c]<a+t) break;
sub(d);
// printf("before add :sum:%lld c:%lld\n",sum,c);
while (b<=f[a]) {
if (min(f[b]+,t)-c>=) {
ins(b);
if (b==c) res--;
}
b++;
}
res += sum;
// printf("after add: sum:%lld c:%lld b:%d res:%lld\n",sum,c,b,res);
}
return res;
}

  

SRM 585 DIV1的更多相关文章

  1. SRM 585 DIV1 L2

    记录dp(i, j)表示前i种卡片的排列,使得LISNumber为j的方法数. #include <iostream> #include <vector> #include & ...

  2. topcoder srm 585 div1

    problem1 link 最优的策略就是从最低下一层开始,每两层的三个节点的子树都可以用一次遍历覆盖. problem2 link 从大到小依次放置每一种数字,并记录已经放置的数字一共有多少个$m$ ...

  3. Topcoder SRM 643 Div1 250<peter_pan>

    Topcoder SRM 643 Div1 250 Problem 给一个整数N,再给一个vector<long long>v; N可以表示成若干个素数的乘积,N=p0*p1*p2*... ...

  4. Topcoder Srm 726 Div1 Hard

    Topcoder Srm 726 Div1 Hard 解题思路: 问题可以看做一个二分图,左边一个点向右边一段区间连边,匹配了左边一个点就能获得对应的权值,最大化所得到的权值的和. 然后可以证明一个结 ...

  5. 图论 SRM 674 Div1 VampireTree 250

    Problem Statement      You are a genealogist specializing in family trees of vampires. Vampire famil ...

  6. SRM 583 DIV1

    A 裸最短路. class TravelOnMars { public: int minTimes(vector <int>, int, int); }; vector<int> ...

  7. SRM 590 DIV1

    转载请注明出处,谢谢viewmode=contents">http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlov ...

  8. Topcoder SRM 602 div1题解

    打卡- Easy(250pts): 题目大意:rating2200及以上和2200以下的颜色是不一样的(我就是属于那个颜色比较菜的),有个人初始rating为X,然后每一场比赛他的rating如果增加 ...

  9. 状态压缩DP SRM 667 Div1 OrderOfOperations 250

    Problem Statement      Cat Noku has just finished writing his first computer program. Noku's compute ...

随机推荐

  1. How to Read, Write XLSX File in Java - Apach POI Example---reference

    No matter how Microsoft is doing in comparison with Google, Microsoft Office is still the most used ...

  2. sql 处理以字符隔开的字符串(类似split)

    sql 处理以字符隔开的字符串(类似split)的处理方法. CREATE PROCEDURE dbo.Vip_SendMails @userids varchar(MAX), ), ), @c va ...

  3. Chapter 2. Overview gradle概览

    2.1. Features //gradle特性 Here is a list of some of Gradle's features. Declarative builds and build-b ...

  4. 线段树---HDU1394Minimum Inversion Number

    此题和上题略有不同,但是大体差不多,不过要把题意转换过来,题目大体意思为, 输入n, 也就是n个数,这些数为0 - (n-1), 这些数刚开始给定输入的顺序, 然后求他的逆序数,然后接着把第一个移到这 ...

  5. 关于HttpServlet和Servlet以及doPost和doGet关系

    这两天在看Servlet和Jsp,spring太难了,还是先看看基础,只怪自己太弱了. Servlet是一个接口,本身定义的是一种网络服务,HttpServlet是已经实现了Servlet接口,也就是 ...

  6. Android布局文件-错误

    View requires API level 14 (current min is 8): <?xml version="1.0" encoding="utf-8 ...

  7. hdu 4772

    题意:给你两个矩阵,一个矩阵旋转90度,180度,270度, 然后和另外一个矩阵进行比较,如果对应值相同,则加一,最后得出最大的值 题目没什么难度....主要是纪念下....貌似这一题是当时比赛前一个 ...

  8. spring aop切面配置

    <bean id="aopLog" class="sardine.commodity.biz.AopLog"/>    <aop:config ...

  9. PL/SQL客户端安装配置说明

    一.电脑安装了多个Oracle客户端时,需要设定pl/sql 中的home 二.配置环境变量: (打开环境变量配置界面操作:我的电脑---属性---高级---环境变量,在系统变量部分新建或编辑即可.w ...

  10. 【sql】经典SQL语句大全

    原文链接:http://www.cnblogs.com/yubinfeng/archive/2010/11/02/1867386.html —————————————————————————————— ...