就是按着DP的思路来做的,结果还是想不到。T_T,行了,别玻璃心了,继续。

这道题目是求在一列数里,由两部分子段和组成的最大和。即对于连续整数组成的串 S1、S2,使 S1 + S2 的和最大。

题目与求最大子段和有相似之处,可以说是最大子段和的变形。

最大子段和:

  在一列数里,对于连续整数组成的串S,使 S 的值最大。

  最大子段和的动态规划方程, dp[i] = max(dp[i-1] + arr[i], arr[i]); 意义:当遍历到当前第 i 个数时,比较 {前一状态dp[i-1] 加上当前数 arr[i]} 与 {arr[i]的大小},选取大的为当前状态。 其实 也就是看 dp[i-1] 是否大于0。

回到这个题目,我们进行的操作是,先从 0 -> n-1 算一次最大子段和,记录在 lft[] 中; 然后再从 n-1 -> 0 倒着算一次最大子段和,记录在rht[]中。

我们要再从 0 -> n-1 遍历一遍看,在当前状态 i 为基准的情况,将它的前半段 和 后半段的值加起来,然后在这里边找最大。

因为在求最大 Max 时, 前半段一定,可以直接用lft[],而后半段是到当前后半段里的最大值,所以还要进行一次操作找出每个位置之后最大值。

动态规划路还很长啊!

 #include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
const int MAXN = ;
int lft[MAXN];
int rht[MAXN];
int arr[MAXN]; int main() {
int T;
scanf("%d", &T);
while(T--) {
int n;
scanf("%d", &n);
for(int i = ; i < n; ++i)
scanf("%d", arr+i);
lft[] = arr[], rht[n-] = arr[n-];
for(int i = ; i < n; ++i) //求到 i 的位置时, 最大子段和
lft[i] = max(arr[i], lft[i-] + arr[i]);
for(int i = n-; i >= ; --i) // 反过来求到 i 的位置时,最大子段和
rht[i] = max(arr[i], rht[i+] + arr[i]);
for(int i = n-; i >= ; --i) // 在计算两部分相加的时候,后边是从当前到最后所有最短和最大的
rht[i] = max(rht[i+], rht[i]);
int Max = -;
for(int i = ; i < n-; ++i) //计算由两部分组成的子段和里的最大值
Max = max(Max, lft[i] + rht[i+]);
printf("%d\n", Max);
}
return ;
}

2593与2479一模一样

Poj2479 & Poj 2593的更多相关文章

  1. poj 2593&&poj2479(最大两子段和)

    Max Sequence Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 16850   Accepted: 7054 Des ...

  2. poj 2593 Max Sequence(线性dp)

    题目链接:http://poj.org/problem?id=2593 思路分析:该问题为求给定由N个整数组成的序列,要求确定序列A的2个不相交子段,使这m个子段的最大连续子段和的和最大. 该问题与p ...

  3. POJ 2479 Maximum sum POJ 2593 Max Sequence

    d(A) = max{sum(a[s1]..a[t1]) + sum(a[s2]..a[t2]) | 1<=s1<=t1<s2<=t2<=n} 即求两个子序列和的和的最大 ...

  4. POJ 2593 Max Sequence

    Max Sequence Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17678   Accepted: 7401 Des ...

  5. POJ 2593&&2479:Max Sequence

    Max Sequence Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 16329   Accepted: 6848 Des ...

  6. POJ 2593

    #include <iostream> #include <stdio.h> using namespace std; int cmp ( const void *a , co ...

  7. POJ2479,2593: 两段maximum-subarray问题

    虽然是两个水题,但是一次AC的感觉真心不错 这个问题算是maximum-subarray问题的升级版,不过主要算法思想不变: 1. maximum-subarray问题 maximum-subarra ...

  8. 动态规划(DP),递推,最大子段和,POJ(2479,2593)

    题目链接:http://poj.org/problem?id=2479 解题报告: 1.再求left[i]的时候,先没有考虑a[i]的正负,先把a[i]放到left[i]中,然后left=max(le ...

  9. POJ推荐50题

    此文来自北京邮电大学ACM-ICPC集训队 此50题在本博客均有代码,可以在左侧的搜索框中搜索题号查看代码. 以下是原文: POJ推荐50题1.标记“难”和“稍难”的题目可以看看,思考一下,不做要求, ...

随机推荐

  1. WPF面试准备

    1.wpf中有两类模板,控件模板controltemplate和datatemplate都派生自Frameworktemplate. 总共有三大模板 ControlTemplate,ItemsPane ...

  2. Google Map API V3开发(2)

    Google Map API V3开发(1) Google Map API V3开发(2) Google Map API V3开发(3) Google Map API V3开发(4) Google M ...

  3. 简单的c# TCP通讯(TcpListener)

      简单的c# TCP通讯(TcpListener) C# 的TCP Socket (同步方式) C# 的TCP Socket (异步方式) C# 的tcp Socket设置自定义超时时间 C# TC ...

  4. C#汉字字母数字正则

    http://novell.me/master-diary/2014-11-15/regular-express-csharp-example.html https://msdn.microsoft. ...

  5. 简述block

    block传值也适用于从后往前传值 先介绍block的基本知识 /** * 1.如何定义一个Block变量 2.怎样给定义的Block变量赋初值 3.如何冲定义Block类型 4.如何使用Block实 ...

  6. 关于ajax的提交未完再续!

    $.ajax({ cache: true, type: "POST", url:"__URL__/add", data:$('#myform').seriali ...

  7. centos安装PHP服务器步骤

    方法一.使用网友开发的EZHTTP程序包一键安装. 可以参考地址http://www.centos.bz/2013/08/ezhttp-tutorial/ http://www.cnblogs.com ...

  8. 摄像头拍照,PHP输入流php://input的使用分析

    在做一个摄像头拍照然后上传的功能,php中使用php://input来获取内容.于是就了解了下php://input. 从官网信息来看,php://input是一个只读信息流,当请求方式是post的, ...

  9. VS2013 预定义的宏

    Visual Studio 2013 预定义的宏 https://msdn.microsoft.com/zh-cn/library/b0084kay(v=vs.120).aspx 列出预定义的 ANS ...

  10. 音频指纹(Philips)

    参考<A Highly Robust Audio Fingerprinting System> Philips 音频指纹提取流程: 仿真效果: 第一个图为歌曲1的第一个指纹. 第二个图为歌 ...