就是按着DP的思路来做的,结果还是想不到。T_T,行了,别玻璃心了,继续。

这道题目是求在一列数里,由两部分子段和组成的最大和。即对于连续整数组成的串 S1、S2,使 S1 + S2 的和最大。

题目与求最大子段和有相似之处,可以说是最大子段和的变形。

最大子段和:

  在一列数里,对于连续整数组成的串S,使 S 的值最大。

  最大子段和的动态规划方程, dp[i] = max(dp[i-1] + arr[i], arr[i]); 意义:当遍历到当前第 i 个数时,比较 {前一状态dp[i-1] 加上当前数 arr[i]} 与 {arr[i]的大小},选取大的为当前状态。 其实 也就是看 dp[i-1] 是否大于0。

回到这个题目,我们进行的操作是,先从 0 -> n-1 算一次最大子段和,记录在 lft[] 中; 然后再从 n-1 -> 0 倒着算一次最大子段和,记录在rht[]中。

我们要再从 0 -> n-1 遍历一遍看,在当前状态 i 为基准的情况,将它的前半段 和 后半段的值加起来,然后在这里边找最大。

因为在求最大 Max 时, 前半段一定,可以直接用lft[],而后半段是到当前后半段里的最大值,所以还要进行一次操作找出每个位置之后最大值。

动态规划路还很长啊!

 #include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
const int MAXN = ;
int lft[MAXN];
int rht[MAXN];
int arr[MAXN]; int main() {
int T;
scanf("%d", &T);
while(T--) {
int n;
scanf("%d", &n);
for(int i = ; i < n; ++i)
scanf("%d", arr+i);
lft[] = arr[], rht[n-] = arr[n-];
for(int i = ; i < n; ++i) //求到 i 的位置时, 最大子段和
lft[i] = max(arr[i], lft[i-] + arr[i]);
for(int i = n-; i >= ; --i) // 反过来求到 i 的位置时,最大子段和
rht[i] = max(arr[i], rht[i+] + arr[i]);
for(int i = n-; i >= ; --i) // 在计算两部分相加的时候,后边是从当前到最后所有最短和最大的
rht[i] = max(rht[i+], rht[i]);
int Max = -;
for(int i = ; i < n-; ++i) //计算由两部分组成的子段和里的最大值
Max = max(Max, lft[i] + rht[i+]);
printf("%d\n", Max);
}
return ;
}

2593与2479一模一样

Poj2479 & Poj 2593的更多相关文章

  1. poj 2593&&poj2479(最大两子段和)

    Max Sequence Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 16850   Accepted: 7054 Des ...

  2. poj 2593 Max Sequence(线性dp)

    题目链接:http://poj.org/problem?id=2593 思路分析:该问题为求给定由N个整数组成的序列,要求确定序列A的2个不相交子段,使这m个子段的最大连续子段和的和最大. 该问题与p ...

  3. POJ 2479 Maximum sum POJ 2593 Max Sequence

    d(A) = max{sum(a[s1]..a[t1]) + sum(a[s2]..a[t2]) | 1<=s1<=t1<s2<=t2<=n} 即求两个子序列和的和的最大 ...

  4. POJ 2593 Max Sequence

    Max Sequence Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17678   Accepted: 7401 Des ...

  5. POJ 2593&&2479:Max Sequence

    Max Sequence Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 16329   Accepted: 6848 Des ...

  6. POJ 2593

    #include <iostream> #include <stdio.h> using namespace std; int cmp ( const void *a , co ...

  7. POJ2479,2593: 两段maximum-subarray问题

    虽然是两个水题,但是一次AC的感觉真心不错 这个问题算是maximum-subarray问题的升级版,不过主要算法思想不变: 1. maximum-subarray问题 maximum-subarra ...

  8. 动态规划(DP),递推,最大子段和,POJ(2479,2593)

    题目链接:http://poj.org/problem?id=2479 解题报告: 1.再求left[i]的时候,先没有考虑a[i]的正负,先把a[i]放到left[i]中,然后left=max(le ...

  9. POJ推荐50题

    此文来自北京邮电大学ACM-ICPC集训队 此50题在本博客均有代码,可以在左侧的搜索框中搜索题号查看代码. 以下是原文: POJ推荐50题1.标记“难”和“稍难”的题目可以看看,思考一下,不做要求, ...

随机推荐

  1. linux下常见解压缩命令

    linux下常见的压缩文件格式有tar.gz.tar.gz.tar.bz2.zip等等.对于不同的压缩文件格式有对应的解压缩命令.下面就对此小结一下: 1.后缀为.tar 用 tar –xvf 解压 ...

  2. 增加UBUNTU字符集 解决中文乱码问题

    对GBK,GB2312,GB18030字符集的支持是UBUNTU中文乱码的罪魁祸首,其实我们可以在保持UTF-8为默认编码的条件下添加对这几个编码的支持,以解决中文乱码问题. 我想这个问题肯定有其他人 ...

  3. hibernate的集中持久化方法的区别

    一.预备知识 在所有之前,说明一下,对于hibernate,它的对象有三种状态,transient.persistent.detached 下边是常见的翻译办法: transient:瞬态或者自由态 ...

  4. Twemproxy 缓存代理服务器

    Twemproxy 缓存代理服务器 Twemproxy 概述 Twemproxy(又称为nutcracker)是一个轻量级的Redis和Memcached代理,主要用来减少对后端缓存服务器的连接数.T ...

  5. Atom编辑器的插件

    先说下atom的插件安装方法吧,因为没用过苹果电脑,所以这里就只说下windows的操作吧. " ctrl+, "调出设置面板 点击install按钮,进去搜索插件面板 1.exp ...

  6. PerfMon.exe通过命令管理计数器

    通过PerfMon命令可以管理计数器,添加删除调整等等. 例1:Logman:在本地和远程系统上,管理和调度性能计数器和事件跟踪日志. master..xp_cmdshell 'logman quer ...

  7. CSS3 之 flexbox 响应式的未来

    CSS3 之 flexbox 响应式的未来 flexbox 伸缩盒模型 . flex: CSS3中一个重要的而且非常有用的属性,用来制作弹性布局是非常的方便而又强大. . flex布局:旨在提供一个更 ...

  8. ASP.NET Core--条件处理程序中的依赖注入

    翻译如下: 在配置期间(使用依赖注入),授权处理程序必须在服务集合中注册. 假设您有一个在授权处理程序中要解析规则的仓储库,并且该仓储库已在服务集合中注册. 授权将在构造函数还原并注入. 例如,如果你 ...

  9. 安卓APP关于切图标

    bin res drawable-hdpi drawable-ldpi drawable-mdpi drawable-nodpi drawable-xhdpi drawable-xxhdpi x越大代 ...

  10. Ubuntu远程vnc配置

    1. 安装xrdp 使用快捷键"Ctrl+Alt+T"打开一个终端窗口,输入"sudo apt-get install xrdp"-->回车-->输 ...