本文详细介绍,如何用caffe跑自己的图像数据用于分类。

1 首先需要安装过程见 http://www.cnblogs.com/love6tao/p/5706830.html 同时依据上面教程,生成了caffe.exe

2 构建自己的数据集。分为train和val 两个数据集,本次实验为2分类任务,一个是包含汽车的图像,一个是不包含汽车图像,其中train 为训练数据集,该文件夹中图像命名格式为trainpos0000.jpg和trainneg0000.jpg,图像通过该命名方式连续编码,val为验证数据集或者叫测试数据,该文件夹中图像命名格式为test0000.jpg,和testneg0000.jpg。如下图所示

  

图像可以用过opencv中cvresize函数就行缩放到256*256.

然后需要准备标签数据,通过新建train.txt val.txt和test.txt就行设置。通过windows命令行进行自动生成,首先在运行中输入cmd ,出现DOS窗口,输入d: 切换到D盘,

再输入cd D:\caffe\caffe-master\caffe-master\mydata\train 切换到train文件夹下 ,输入命令“dir/s/on/b>d:/train.txt”,则会在D盘生成一个名为train的文本文件,里面存放着全部图像的路径。 通过查找替换,最终生成的 train.txt val.txt和test.txt 。其中val.txt和test.txt 相比,test没有标签

    

3 讲数据集转化为caffe的数据类型

caffe的数据类型为LMDB和leveldb,caffe并不处理原始数据,而是转化为LMDB或者LEVELDB格式,这样可以保持较高的IO效率。

怎么转换呢?在caffe工程中有convert_imageset的工程,对其进行编译,形成convert_imageset.exe即可。

然后利用create_imagenet.sh使数据集生成leveldb格式的文件。create_imagenet.sh放在examples/imagenet中,将它拷贝到数据集的路径下,本文数据集

关键的是修改create_imagenet.sh中的路径使之能够进行数据转换

example设定为数据集的路径 data也设定为数据集路径  tools为convert_imageset.exe的路径

train_data_root 训练数据集路径 val_data_root 测试数据集路径

后面resize为false则其不需要转换为256*256

由于本文是转为leveldb文件类型  添加了这一句代码 ”--backend=leveldb\ “ 同时注意train.txt val.txt的路径是data路径下,

运行该程序,生成了两个leveldb文件夹,ilsvrc12_train_leveldb和ilsvrc12_val_leveldb

4 计算图像的均值

首先生成compute_image_mean.exe文件,该文件在caffe工程中也存在对应程序,对其进行编译,形成compute_image_mean.exe即可。

然后在examples/imagenet下有一个sh文件make_imagenet_mean.sh,将它拷贝到个人数据文件夹mydata中,然后打开这个文件进行编辑。

example是数据集路径  data 为数据集路径  tools为compute_image_mean.exe路径

第9行为利用exe 对train_leveldb 数据生成 imagenet_mean.binaryproto

运行make_imagenet_mean.sh后,会生成了 imagenet_mean.binaryproto

5 开始设计网络

5.1 设置train_val.prototxt文件

从caffe-root\models\bvlc_reference_caffenet中拷贝train_val.prototxt进行修改。

设置 mean_file: 和数据source:

5.2  设置solver.prototxt文件

从caffe-root\models\bvlc_reference_caffenet中拷贝solver.prototxt进行修改。net的路径为上面设置的路径 ,后面迭代的参数按照实际情况修改。

5-3 训练网络,运行train_caffenet.sh文件

从caffe-root\\examples\imagenet中拷贝train_caffenet.sh进行修改。

设置caffe.exe路径 和上述solver.prototxt文件路径

训练结果:运行train_caffenet.sh文件效果

本机配置是win7+cude8.0+1080的显卡,可以看到loss在不断的降低。这是在设置好solve参数的情况下。

生成的model 为 mydata_iter_100.caffemodel

5-4 测试网络

在数据目录下新建一个文本文件,然后将后缀名改成sh。填入以下语句:

首先设置caffe.exe的路径 然后设置网络的路径,最后设置载入的训练参数路径。运行该sh文件,得到最后的分类正确率为:95%

到处,整个训练和测试过程走通了,后续就是调节参数的问题了。

用caffe跑自己的数据,基于WINDOWS的caffe的更多相关文章

  1. Windows下用Caffe跑自己的数据(遥感影像)

    1 前言 Caffe对于像我这样的初学者来说是一款非常容易上手的深度学习框架.关于用Caffe跑自己的数据这样的博客已经非常多,感谢前辈们为我们提供的这么好的学习资源.这里我主要结合我所在的行业,说下 ...

  2. caffe跑densenet的错误:Message type "caffe.PoolingParameter" has no field named "ceil_mode".【转自CSDN】

    最近看了densenet这篇论文,论文作者给了基于caffe的源码,自己在电脑上跑了下,但是出现了Message type “caffe.PoolingParameter” has no field ...

  3. Windows下caffe安装详解(仅CPU)

    本文大多转载自 http://blog.csdn.net/guoyk1990/article/details/52909864,加入部分自己实战心得. 1.环境:windows 7\VS2013 2. ...

  4. CAFFE学习笔记(五)用caffe跑自己的jpg数据

    1 收集自己的数据 1-1 我的训练集与测试集的来源:表情包 由于网上一幅一幅图片下载非常麻烦,所以我干脆下载了两个eif表情包.同一个表情包里的图像都有很强的相似性,因此可以当成一类图像来使用.下载 ...

  5. 判断OpenCV是否为共享库,Windows基于CMake编译Caffe需要opencv共享库

    判断OpenCV是否为共享库,Windows基于CMake编译Caffe需要opencv共享库 TLDR 只考虑windows下opencv预编译包的情况. 对于opencv2.4.x系列,cmake ...

  6. Caffe+VS2015+python3的安装(基于windows)

    在网上找了许多安装Caffe的教程 感觉全都是杂乱无章的 而且也没有详细的 只能自己当小白鼠来实验一次了 本次配置:CUDA 8.0+ CUDNN  +VS 2015 +Python 3.5 + Ca ...

  7. 你的计算机也可以看懂世界——十分钟跑起卷积神经网络(Windows+CPU)

    众所周知,如果你想研究Deep Learning,那么比较常用的配置是Linux+GPU,不过现在很多非计算机专业的同学有时也会想采用Deep Learning方法来完成一些工作,那么Linux+GP ...

  8. Wizard Framework:一个自己开发的基于Windows Forms的向导开发框架

    最近因项目需要,我自己设计开发了一个基于Windows Forms的向导开发框架,目前我已经将其开源,并发布了一个NuGet安装包.比较囧的一件事是,当我发布了NuGet安装包以后,发现原来已经有一个 ...

  9. VC中基于 Windows 的精确定时[转]

    在工业生产控制系统中,有许多需要定时完成的操作,如定时显示当前时间,定时刷新屏幕上的进度条,上位 机定时向下位机发送命令和传送数据等.特别是在对控制性能要求较高的实时控制系统和数据采集系统中,就更需要 ...

随机推荐

  1. ABP入门系列(4)——领域层定义仓储并实现

    一.先来介绍下仓储 仓储(Repository): 仓储用来操作数据库进行数据存取.仓储接口在领域层定义,而仓储的实现类应该写在基础设施层. 在ABP中,仓储类要实现IRepository接口,接口定 ...

  2. 公共代码参考(httpclient)

    public class HttpClientUtils { private static final String CHARSET = "UTF-8"; /* * http ge ...

  3. 浅谈Excel开发:一 Excel 开发概述

        做Office相关的开发工作快一年多了,在这一年多里,在插件的开发中遇到了各种各样的问题和困难,还好同事们都很厉害,在和他们的交流讨论中学到了很多的知识.目前Office相关的开发资料是比较少 ...

  4. Direct2D教程(外篇)环境配置

    2014年世界杯首场淘汰赛马上开始了,闲着没事,整理以前的博客草稿打发时间,意外的发现这篇文章,本来是打算加入到Direct2D那个系列的,不知道为什么把它给遗漏了.环境配置,对于熟手来说,不是什么重 ...

  5. 如何在 IIS 上搭建 mercurial server

    mercurial server 对于代码管理工具,更多的人可能更熟悉 Git 一些(Git 太火了).其实另外一款分布式代码管理工具也被广泛的使用,它就是 mercurial.多人协作时,最好能够通 ...

  6. 三天学会HTML5 之第一天

    引言 HTML5 一直是非常热门的话题,因此此系列文章主要从一些基本功能开始讲起,逐步深入了解HTML5的新概念. 首先了解一些基本的术语和概念. SGML, HTML,XML三者之间的区别 Doc类 ...

  7. 案例研究:CopyToAsync

    返回该系列目录<基于Task的异步模式--全面介绍> 把一个流拷贝到另一个流是有用且常见的操作.Stream.CopyTo 方法在.Net 4中就已经加入来满足要求这个功能的场景,例如在一 ...

  8. 解决URL中文乱码问题

    在做一个HTTPS连接时, 要客户端合成一段HTTPS地址 如果地址含中文的话程序会crash, 检查发现原来是中文没有转码的原因 在NSString库里面找到了下面两个方法 - (NSString ...

  9. iOS-数据持久化基础-JSON与XML数据解析

    解析的基本概念 所谓“解析”:从事先规定好的格式串中提取数据 解析的前提:提前约定好格式.数据提供方按照格式提供数据.数据获取方按照格式获取数据 iOS开发常见的解析:XML解析.JSON解析 一.X ...

  10. Java面试(3)-- Java关系运算符

    class Demo03{ public static void main(String[] args){ //关系运算符 == //例1 int a = 10; int b = 10; double ...