040 DataFrame中的write与read编程
一:SparkSQL支持的外部数据源
1.支持情况

2.External LIbraries
不是内嵌的,看起来不支持。
但是现在已经有很多开源插件,可以进行支持。
3.参考材料
· 支持的格式:https://github.com/databricks
二:准备
1.启动服务
RunJar是metastore服务,在hive那边开启。
只需要启动三个服务就可以了,以后runjar都要启动,因为这里使用hive与spark集成了,不启动这个服务,就会总是报错。

2.启动spark-shell

三:测试检验程序
1.DataFrame的构成

2.结果

3.测试

4.结果

四:DataFrame的创建
1.创建SQLContext
val sqlContext=new SQLContext(sc)
2.创建DataFrame(两种方式)
val df=sqlContext.#
val df=sqlContext.read.#
3.DataFrame数据转换
val ndf=df.#.#
4.结果保存
ndf.#
ndf.write.#
五:DataFrame的保存
1.第一种方式
将DataFrame转换为RDD,RDD数据保存
2.第二种方式
直接通过DataFrame的write属性将数据写出。
但是有限制,必须有定义类实现,默认情况:SparkSQL只支持parquet,json,jdbc
六:两个常用的网站(数据源问题)
1.金砖公司提供的一些插件

2.package网址
https://spark-packages.org/

七:DataFrameReader编程模式
功能: 通过SQLContext提供的reader读取器读取外部数据源的数据,并形成DataFrame
1.源码的主要方法
format:给定数据源数据格式类型,eg: json、parquet
schema:给定读入数据的数据schema,可以不给定,不给定的情况下,进行数据类型推断
option:添加参数,这些参数在数据解析的时候可能会用到
load:
有参数的指从参数给定的path路径中加载数据,比如:JSON、Parquet...
无参数的指直接加载数据(根据option相关的参数)
jdbc:读取关系型数据库的数据
json:读取json格式数据
parquet:读取parquet格式数据
orc: 读取orc格式数据
table:直接读取关联的Hive数据库中的对应表数据
八:Reader的程序测试
1.新建文件夹

2.上传数据

3.加载json数据
val df=sqlContext.read.format("json").load("spark/sql/people.json")
结果:

4.数据展示
df.show()
结果:

5.数据注册成临时表并操作展示

结果:

6.和上面的方法等效的方式
sqlContext.sql("select * from json.`spark/sql/people.json`").show()
结果:

7.读取显示parquet格式的数据
sqlContext.read.format("parquet").load("spark/sql/users.parquet").show()
结果:

8.加载mysql中的数据
这个是服务器上的mysql。
sqlContext.read.jdbc("jdbc:mysql://linux-hadoop01.ibeifeng.com:3306/mysql?user=root&password=123456", "user", new java.util.Properties()).show()
这个地方比较特殊。
第一次使用bin/spark-shell进入后,使用命令,效果如下:

然后使用这种方式进行启动,加上jar
bin/spark-shell --jars /opt/softwares/mysql-connector-java-5.1.27-bin.jar --driver-class-path /opt/softwares/mysql-connector-java-5.1.27-bin.jar

九:DataFrameWriter编程模式
功能:将DataFrame的数据写出到外部数据源
1.源码主要方法
mode: 给定数据输出的模式
`overwrite`: overwrite the existing data.
`append`: append the data.
`ignore`: ignore the operation (i.e. no-op).
`error`: default option, throw an exception at runtime.
format:给定输出文件所属类型, eg: parquet、json
option: 给定参数
partitionBy:给定分区字段(要求输出的文件类型支持数据分区)
save: 触发数据保存操作 --> 当该API被调用后,数据已经写出到具体的数据保存位置了
jdbc:将数据输出到关系型数据库
当mode为append的时候,数据追加方式是:
先将表中的所有索引删除
再追加数据
没法实现,数据不存在就添加,存在就更新的需求
十:writer的程序测试
1.读取hive数据,形成DateFrame

2.结果保存为json格式
自动创建存储目录。

效果:

3.不再详细粘贴结果了
读取Hive表数据形成DataFrame
val df = sqlContext.read.table("common.emp") 结果保存json格式
df.select("empno","ename").write.mode("ignore").format("json").save("/beifeng/result/json")
df.select("empno","ename").write.mode("error").format("json").save("/beifeng/result/json")
df.select("empno","ename", "sal").write.mode("overwrite").format("json").save("/beifeng/result/json")
df.select("empno","ename").write.mode("append").format("json").save("/beifeng/result/json")\
上面虽然在追加的时候加上了sal,但是解析没有问题
sqlContext.read.format("json").load("/beifeng/result/json").show() 结果保存parquet格式
df.select("empno", "ename", "deptno").write.format("parquet").save("/beifeng/result/parquet01")
df.select("empno", "ename","sal", "deptno").write.mode("append").format("parquet").save("/beifeng/result/parquet01") ## 加上sal导致解析失败,读取数据的时候 sqlContext.read.format("parquet").load("/beifeng/result/parquet01").show(100)
sqlContext.read.format("parquet").load("/beifeng/result/parquet01/part*").show(100) partitionBy按照给定的字段进行分区
df.select("empno", "ename", "deptno").write.format("parquet").partitionBy("deptno").save("/beifeng/result/parquet02")
sqlContext.read.format("parquet").load("/beifeng/result/parquet02").show(100)
040 DataFrame中的write与read编程的更多相关文章
- pandas | 详解DataFrame中的apply与applymap方法
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是pandas数据处理专题的第5篇文章,我们来聊聊pandas的一些高级运算. 在上一篇文章当中,我们介绍了panads的一些计算方法, ...
- [引]MSDN Visual Basic 和 C# 中都会用到的编程概念
本文转自:http://msdn.microsoft.com/zh-cn/library/dd460655.aspx 本节介绍 Visual Basic 和 C# 中都会用到的编程概念. 本节内容 ...
- pandas,对dataFrame中某一个列的数据进行处理
背景:dataFrame的数据,想对某一个列做逻辑处理,生成新的列,或覆盖原有列的值 下面例子中的df均为pandas.DataFrame()的数据 1.增加新列,或更改某列的值 df[&qu ...
- [Spark][Python][DataFrame][RDD]DataFrame中抽取RDD例子
[Spark][Python][DataFrame][RDD]DataFrame中抽取RDD例子 sqlContext = HiveContext(sc) peopleDF = sqlContext. ...
- python – 基于pandas中的列中的值从DataFrame中选择行
如何从基于pandas中某些列的值的DataFrame中选择行?在SQL中我将使用: select * from table where colume_name = some_value. 我试图看看 ...
- Python中识别DataFrame中的nan
# 识别python中DataFrame中的nanfor i in pfsj.index: if type(pfsj.loc[i]['WZML']) == float: print('float va ...
- [Spark][Python]DataFrame中取出有限个记录的例子
[Spark][Python]DataFrame中取出有限个记录的例子: sqlContext = HiveContext(sc) peopleDF = sqlContext.read.json(&q ...
- STL中实现 iterator trail 的编程技巧
STL中实现 iterator trail 的编程技巧 <泛型编程和 STL>笔记及思考. 这篇文章主要记录在 STL 中迭代器设计过程中出现的编程技巧,围绕的 STL 主题为 (迭代器特 ...
- 更改 pandas dataframe 中两列的位置
更改 pandas dataframe 中两列的位置: 把其中的某列移到第一列的位置. 原来的 df 是: df = pd.read_csv('I:/Papers/consumer/codeandpa ...
随机推荐
- 解决 winform 界面对不齐
最近做了一个winform的程序,本机上界面对得很齐,到一到客户的机器上就惨不忍睹,一番研究后搞定: 1. AutoScaleMode = None 2. BackgroundImageLayout ...
- 解题:NOI 2010 航空管制
题面 常见的套路与不常见的套路 第一问是常见的套路,建反边用优先队列跑拓扑排序 第二问是不常见的套路,如何判断一个点最早什么时候起飞?先不加它来拓扑排序,直到拓扑排序不能进行下去了,这个时刻就是它必须 ...
- RabbitMQ的安装部署
RabbitMQ安装部署 一.软件准备 wget http://erlang.org/download/otp_src_19.3.tar.gz wget http://www.rabbitmq.com ...
- Java基础-SSM之mybatis的统计函数和分页查询
Java基础-SSM之mybatis的统计函数和分页查询 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.
- 在同一个表中将varchar2类型的数据转存到blob类型的字段中
用一条修改语句即可:update t_content set f_body=rawtohex(f_check) where f_type in (0,4)此处须用rawtohex()函数将f_chec ...
- zsh与oh-my-zsh是什么
zsh是bash的增强版,其实zsh和bash是两个不同的概念.zsh更加强大. 通常zsh配置起来非常麻烦,且相当的复杂,所以oh-my-zsh是为了简化zsh的配置而开发的,因此oh-my-zsh ...
- Java Web之路(二)Servlet之HttpServletResponse和HttpServletRequest
HttpServletResponse 1.告诉服务器应用使用UTF-8解析文本的两种方式,告诉客户端要使用什么编码 response.setHeader("content-type&quo ...
- [转载]AngularJS视图
http://www.yiibai.com/angularjs/angularjs_views.html <html> <head> <title>Angular ...
- Java 多线程(Thread) 同步(synchronized) 以及 wait, notify 相关 [实例介绍]
场景描述 有一家很大的商场,在某市有几个商品配送中心,并有几家分店,这家商场经营很多的商品,平时运营情况是这样的: 根据各分店的商品销售情况,给分店配送相应需求量的商品:并上架到分店指让的位置,供客户 ...
- 20155212 2016-2017-2 《Java程序设计》第8周学习总结
20155212 2016-2017-2 <Java程序设计>第8周学习总结 教材学习内容总结 Chapter14 1. Channel架构与操作 想要取得Channel的实作对象,可以使 ...