解题:SPOJ 3734 Periodni
按列高建立笛卡尔树,转成树上问题......
笛卡尔树是什么?
它一般是针对序列建立的,是下标的BST和权值的堆(即中序遍历是原序列连续区间,节点权值满足堆性质),这里不讲具体怎么建树(放在知识总结里了)。我们想一想对于一个序列建出来的树长啥样(灵魂画师上线辣)

也就是说树上一个节点对应原图上一个矩形区域,这样我们就把原序列转成了一个组合问题。设$dp[i][j]$表示以$i$为根的子树的区域里放了$j$个车的方案数,那么先是子树里的放法。呃,这不就是树形背包吗。。。转移不写了
然后考虑在自己的矩形里的放法,我们枚举放了$k$个车,那么$dp[i][j]$可以从$dp[i][j-k]$转移过来,过程是这$k$个车排列($k!$)+行上组合($h[i]-h[fa[i]]$里选$k$个)+列上组合($siz[i]-j+k$)
注意:上下两个转移都不要啥也不放就转移,这时候显然是假的=。=
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,M=1e6+,mod=1e9+;
int fac[M],inv[M],fth[N],son[N][];
int a[N],stk[N],siz[N],dp[N][N];
int n,k,top,root;
void Add(int &x,int y)
{
x+=y;
if(x>=mod) x-=mod;
}
int Qpow(int x,int k)
{
if(k==) return x;
int tmp=Qpow(x,k/);
return k%?1ll*tmp*tmp%mod*x%mod:1ll*tmp*tmp%mod;
}
int C(int a,int b)
{
return 1ll*fac[a]*inv[b]%mod*inv[a-b]%mod;
}
void Pre()
{
fac[]=inv[]=;
for(int i=;i<=;i++) fac[i]=1ll*fac[i-]*i%mod;
inv[]=Qpow(fac[],mod-);
for(int i=;i;i--) inv[i]=1ll*inv[i+]*(i+)%mod;
}
void DFS(int nde)
{
siz[nde]=dp[nde][]=;
for(int i=,g;i<=;i++)
if(g=son[nde][i])
{
DFS(g);
for(int j=min(siz[nde],k);~j;j--)
for(int h=min(siz[g],k-j);h;h--)
Add(dp[nde][j+h],1ll*dp[nde][j]*dp[g][h]%mod);
siz[nde]+=siz[g];
}
int col=a[nde]-a[fth[nde]];
for(int i=min(siz[nde],k);~i;i--)
{
int tmp=;
for(int j=min(i,col);j;j--)
Add(tmp,1ll*dp[nde][i-j]*fac[j]%mod*C(col,j)%mod*C(siz[nde]-i+j,j)%mod);
Add(dp[nde][i],tmp);
}
}
int main()
{
scanf("%d%d",&n,&k),Pre();
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
for(int i=;i<=n;i++)
{
while(top&&a[stk[top]]>a[i])
{
int nde=stk[top]; top--;
if(top&&a[stk[top]]>a[i])
son[stk[top]][]=nde,fth[nde]=stk[top];
else
son[i][]=nde,fth[nde]=i;
}
stk[++top]=i;
}
while(top>)
{
son[stk[top-]][]=stk[top];
fth[stk[top]]=stk[top-],top--;
}
// for(int i=1;i<=n;i++) printf("%d %d\n",son[i][0],son[i][1]);
root=stk[],DFS(root);
printf("%d",dp[root][k]);
return ;
}
解题:SPOJ 3734 Periodni的更多相关文章
- [BZOJ2616]SPOJ PERIODNI 树形dp+组合数+逆元
2616: SPOJ PERIODNI Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 128 Solved: 48[Submit][Status][ ...
- 【BZOJ2616】SPOJ PERIODNI 笛卡尔树+树形DP
[BZOJ2616]SPOJ PERIODNI Description Input 第1行包括两个正整数N,K,表示了棋盘的列数和放的车数. 第2行包含N个正整数,表示了棋盘每列的高度. Output ...
- SPOJ QTREE 系列解题报告
题目一 : SPOJ 375 Query On a Tree http://www.spoj.com/problems/QTREE/ 给一个树,求a,b路径上最大边权,或者修改a,b边权为t. #in ...
- BZOJ.2616.SPOJ PERIODNI(笛卡尔树 树形DP)
BZOJ SPOJ 直观的想法是构建笛卡尔树(每次取最小值位置划分到两边),在树上DP,这样两个儿子的子树是互不影响的. 令\(f[i][j]\)表示第\(i\)个节点,放了\(j\)个车的方案数. ...
- Spring-2-H Array Diversity(SPOJ AMR11H)解题报告及测试数据
Array Diversity Time Limit:404MS Memory Limit:0KB 64bit IO Format:%lld & %llu Descript ...
- Spring-2-J Goblin Wars(SPOJ AMR11J)解题报告及测试数据
Goblin Wars Time Limit:432MS Memory Limit:0KB 64bit IO Format:%lld & %llu Description Th ...
- Spring-2-B Save the Students(SPOJ AMR11B)解题报告及测试数据
Save the Students Time Limit:134MS Memory Limit:0KB 64bit IO Format:%lld & %llu Descri ...
- BZOJ2616 SPOJ PERIODNI(笛卡尔树+树形dp)
考虑建一棵小根堆笛卡尔树,即每次在当前区间中找到最小值,以最小值为界分割区间,由当前最小值所在位置向两边区间最小值所在位置连边,递归建树.那么该笛卡尔树中的一棵子树对应序列的一个连续区间,且根的权值是 ...
- BZOJ2616 : SPOJ PERIODNI
长为$A$,宽为$B$的矩阵放$K$个车的方案数$=C(A,K)\times C(B,K)\times K!$. 建立笛卡尔树,那么左右儿子独立,设$f[i][j]$表示$i$子树内放$j$个车的方案 ...
随机推荐
- Android应用安全之脆弱的加密
程序员希望通过加密来提升程序的安全性性,但却缺乏专业的密码学背景知识,使得应用对数据的保护非常薄弱.本文将介绍可能出现在Android应用中的一些脆弱的加密方式,以及对应的攻击方法. 造成脆弱加密的主 ...
- 20155304《网络对抗》Exp2 后门原理与实践
20155332<网络对抗>Exp2 后门原理与实践 实验内容 (3.5分) (1)使用netcat获取主机操作Shell,cron启动 (0.5分) (2)使用socat获取主机操作Sh ...
- # 20155319 Exp3 免杀原理与实践
20155319 Exp3 免杀原理与实践 基础问题 (1)杀软是如何检测出恶意代码的? 基于特征码的检测 启发式的恶意软件检测 基于行为的恶意软件检测 (2)免杀是做什么? 免杀,从字面进行理解,避 ...
- HTML基础之JS
HTML中的三把利器的JS 又称为JavaScript,看着好像和Java有点联系,实际上他和java半毛钱关系都没有,JavaScript和我们学习的Python.Go.Java.C++等,都是一种 ...
- idea 迁移maven项目出现导入仓库半天没反应的问题解决
可以先参考: https://www.cnblogs.com/kinome/p/10289212.html 然后再看看maven配置文件是否正确,项目进行迁移时,如果环境不同,比如一个是使用的自定义m ...
- CS190.1x-ML_lab4_ctr_student
这次lab主要主要是研究click-through rate (CTR).数据集来自于Kaggle的Criteo Labs dataset.相关ipynb文件见我github. 作业分成5个部分:on ...
- 使用Redis做分布式
一 为什么使用 Redis 在项目中使用 Redis,主要考虑两个角度:性能和并发.如果只是为了分布式锁这些其他功能,还有其他中间件 Zookpeer 等代替,并非一定要使用 Redis. 性能: 如 ...
- Android几行代码实现监听微信聊天
原创作品,转载请注明出处,尊重别人的劳动果实. 2017.2.7更新: *现在适配微信版本更加容易了,只需要替换一个Recourse-ID即可 *可以知道对方发的是小视频还是语音,并获取秒数. *可以 ...
- ansible自动化工具安装和简单使用
ansible自动化工具安装和简单使用 1.安装 ansible依赖于Python 2.6或更高的版本.paramiko.PyYAML及Jinja2. 2.1 编译安装 解决依赖关系 # yum -y ...
- 将WebService部署到 SharePoint 2010 gac 缓存中,并用Log4Net记录日志到数据库
最近做了一个sharePoint项目,需要实现的功能是,第三方网站访问我们sharePoint中的数据,通过Webservice方式实现文件的上传和下载. 于是代码工作完成了之后,本地调试没什么问题, ...