解题:SPOJ 3734 Periodni
按列高建立笛卡尔树,转成树上问题......
笛卡尔树是什么?
它一般是针对序列建立的,是下标的BST和权值的堆(即中序遍历是原序列连续区间,节点权值满足堆性质),这里不讲具体怎么建树(放在知识总结里了)。我们想一想对于一个序列建出来的树长啥样(灵魂画师上线辣)
也就是说树上一个节点对应原图上一个矩形区域,这样我们就把原序列转成了一个组合问题。设$dp[i][j]$表示以$i$为根的子树的区域里放了$j$个车的方案数,那么先是子树里的放法。呃,这不就是树形背包吗。。。转移不写了
然后考虑在自己的矩形里的放法,我们枚举放了$k$个车,那么$dp[i][j]$可以从$dp[i][j-k]$转移过来,过程是这$k$个车排列($k!$)+行上组合($h[i]-h[fa[i]]$里选$k$个)+列上组合($siz[i]-j+k$)
注意:上下两个转移都不要啥也不放就转移,这时候显然是假的=。=
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,M=1e6+,mod=1e9+;
int fac[M],inv[M],fth[N],son[N][];
int a[N],stk[N],siz[N],dp[N][N];
int n,k,top,root;
void Add(int &x,int y)
{
x+=y;
if(x>=mod) x-=mod;
}
int Qpow(int x,int k)
{
if(k==) return x;
int tmp=Qpow(x,k/);
return k%?1ll*tmp*tmp%mod*x%mod:1ll*tmp*tmp%mod;
}
int C(int a,int b)
{
return 1ll*fac[a]*inv[b]%mod*inv[a-b]%mod;
}
void Pre()
{
fac[]=inv[]=;
for(int i=;i<=;i++) fac[i]=1ll*fac[i-]*i%mod;
inv[]=Qpow(fac[],mod-);
for(int i=;i;i--) inv[i]=1ll*inv[i+]*(i+)%mod;
}
void DFS(int nde)
{
siz[nde]=dp[nde][]=;
for(int i=,g;i<=;i++)
if(g=son[nde][i])
{
DFS(g);
for(int j=min(siz[nde],k);~j;j--)
for(int h=min(siz[g],k-j);h;h--)
Add(dp[nde][j+h],1ll*dp[nde][j]*dp[g][h]%mod);
siz[nde]+=siz[g];
}
int col=a[nde]-a[fth[nde]];
for(int i=min(siz[nde],k);~i;i--)
{
int tmp=;
for(int j=min(i,col);j;j--)
Add(tmp,1ll*dp[nde][i-j]*fac[j]%mod*C(col,j)%mod*C(siz[nde]-i+j,j)%mod);
Add(dp[nde][i],tmp);
}
}
int main()
{
scanf("%d%d",&n,&k),Pre();
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
for(int i=;i<=n;i++)
{
while(top&&a[stk[top]]>a[i])
{
int nde=stk[top]; top--;
if(top&&a[stk[top]]>a[i])
son[stk[top]][]=nde,fth[nde]=stk[top];
else
son[i][]=nde,fth[nde]=i;
}
stk[++top]=i;
}
while(top>)
{
son[stk[top-]][]=stk[top];
fth[stk[top]]=stk[top-],top--;
}
// for(int i=1;i<=n;i++) printf("%d %d\n",son[i][0],son[i][1]);
root=stk[],DFS(root);
printf("%d",dp[root][k]);
return ;
}
解题:SPOJ 3734 Periodni的更多相关文章
- [BZOJ2616]SPOJ PERIODNI 树形dp+组合数+逆元
2616: SPOJ PERIODNI Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 128 Solved: 48[Submit][Status][ ...
- 【BZOJ2616】SPOJ PERIODNI 笛卡尔树+树形DP
[BZOJ2616]SPOJ PERIODNI Description Input 第1行包括两个正整数N,K,表示了棋盘的列数和放的车数. 第2行包含N个正整数,表示了棋盘每列的高度. Output ...
- SPOJ QTREE 系列解题报告
题目一 : SPOJ 375 Query On a Tree http://www.spoj.com/problems/QTREE/ 给一个树,求a,b路径上最大边权,或者修改a,b边权为t. #in ...
- BZOJ.2616.SPOJ PERIODNI(笛卡尔树 树形DP)
BZOJ SPOJ 直观的想法是构建笛卡尔树(每次取最小值位置划分到两边),在树上DP,这样两个儿子的子树是互不影响的. 令\(f[i][j]\)表示第\(i\)个节点,放了\(j\)个车的方案数. ...
- Spring-2-H Array Diversity(SPOJ AMR11H)解题报告及测试数据
Array Diversity Time Limit:404MS Memory Limit:0KB 64bit IO Format:%lld & %llu Descript ...
- Spring-2-J Goblin Wars(SPOJ AMR11J)解题报告及测试数据
Goblin Wars Time Limit:432MS Memory Limit:0KB 64bit IO Format:%lld & %llu Description Th ...
- Spring-2-B Save the Students(SPOJ AMR11B)解题报告及测试数据
Save the Students Time Limit:134MS Memory Limit:0KB 64bit IO Format:%lld & %llu Descri ...
- BZOJ2616 SPOJ PERIODNI(笛卡尔树+树形dp)
考虑建一棵小根堆笛卡尔树,即每次在当前区间中找到最小值,以最小值为界分割区间,由当前最小值所在位置向两边区间最小值所在位置连边,递归建树.那么该笛卡尔树中的一棵子树对应序列的一个连续区间,且根的权值是 ...
- BZOJ2616 : SPOJ PERIODNI
长为$A$,宽为$B$的矩阵放$K$个车的方案数$=C(A,K)\times C(B,K)\times K!$. 建立笛卡尔树,那么左右儿子独立,设$f[i][j]$表示$i$子树内放$j$个车的方案 ...
随机推荐
- 2017-2018-2 20155224『网络对抗技术』Exp4:恶意代码分析
原理与实践说明 实践目标 监控你自己系统的运行状态,看有没有可疑的程序在运行. 分析一个恶意软件,就分析Exp2或Exp3中生成后门软件:分析工具尽量使用原生指令或sysinternals,systr ...
- 20155323刘威良《网络对抗》Exp5 MSF基础应用
20155323刘威良<网络对抗>Exp5 MSF基础应用 实践内容 本实践目标是掌握metasploit的基本应用方式,重点常用的三种攻击方式的思路.具体需要完成: 1.1一个主动攻击实 ...
- 分布式事务的CAP理论 与BASE理论
CAP理论 一个经典的分布式系统理论.CAP理论告诉我们:一个分布式系统不可能同时满足一致性(C:Consistency).可用性(A:Availability)和分区容错性(P:Partition ...
- DelayQueue 订单限时支付实例
1.订单实体 package com.zy.entity; import java.util.Date; import java.util.concurrent.Delayed; import jav ...
- SVN回退版本
执行svn up 命令 保证当前本地版本是最新的版本. svn up 执行svn log 命令,查看历史修改,确定需要回复的版本,如果想要对比2个不同版本的文件差异 可以使用命令 svn diff - ...
- ejs 模板使用方法
http://embeddedjs.com/ Embedded JS Templates Embedded JS(EJS) 来源于ERB模板,且与ERB有很多相似之处.它有着与ERB相同的Tag,且包 ...
- “数学口袋精灵”第二个Sprint计划(第三天)
“数学口袋精灵”第二个Sprint计划----第三天进度 任务分配: 冯美欣:欢迎界面的背景音乐完善 吴舒婷:游戏界面的动作条,选择答案后的音效 林欢雯:代码算法设计 进度: 冯美欣:欢迎界面背景 ...
- Alpha冲刺——事后诸葛亮
组长博客 作业博客 项目Postmortem 设想和目标 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 我们的软件针对的是福大学子来到食堂会犹豫不决无法决定吃什么 ...
- 关于断言(Assert)
断言,字面上的意思大致是十分肯定的说,也就是说我们相信这个结果是真的.如果我们的断言不为真,那这个这个结果就和我们预期的结果不一样.在编程上同理,如果程序运行出来的结果和你想要的结果不一致,那你的程序 ...
- 从零开始学Kotlin-泛型(8)
从零开始学Kotlin基础篇系列文章 与 Java 一样,Kotlin 也提供泛型,为类型安全提供保证,消除类型强转的烦恼. 泛型类的基本使用 泛型,即 "参数化类型",将类型参数 ...