参考资料https://gavin_nicholas.coding.me/archives/

1. 如何输入括号和分隔符

()[]| 表示自己, {} 表示 {} 。当要显示大号的括号或分隔符时,要用 \left\right 命令。

例子:$$f(x,y,z) = 3y^2z \left( 3+\frac{7x+5}{1+y^2} \right)$$ ,显示:

\[f(x,y,z) = 3y^2z \left( 3+\frac{7x+5}{1+y^2} \right)
\]

有时候要用\left.\right.进行匹配而不显示本身。

例子:$$\left. \frac{ {\rm d}u}{ {\rm d}x} \right| _{x=0}$$,显示:

\[\left. \frac{ {\rm d}u}{ {\rm d}x} \right| _{x=0}
\]

1.1 偏导

$$\frac{\partial^{2}y}{\partial x^{2}}$$

\[\frac{\partial^{2}y}{\partial x^{2}}
\]

2. 运算符:

关系运算符 markdown语言 集合运算符 markdown语言
\(\pm\) $\pm$ \(\emptyset\) $\emptyset$
\(\times\) $\times$ \(\in\) $\in$
\(\div\) $\div$ \(\notin\) $\notin$
\(\mid\) $\mid$ \(\subset\) $\subset$
\(\nmid\) $\nmid$ \(\supset\) $\supset$
\(\cdot\) $\cdot$ \(\subseteq\) $\subseteq$
\(\circ\) $\circ$ \(\supseteq\) $\supseteq$
\(\ast\) $\ast$ \(\bigcap\) $\bigcap$
\(\bigodot\) $\bigodot$ \(\bigcup\) $\bigcup$
\(\bigotimes\) $\bigotimes$ \(\bigvee\) $\bigvee$
\(\bigoplus\) $\bigoplus$ \(\bigvee\) $\bigvee$
\(\leq\) $\leq$ \(\bigwedge\) $\bigwedge$
\(\geq\) $\geq$ \(\biguplus\) $\biguplus$
\(\neq\) $\neq$ \(\bigsqcup\) $\bigsqcup$
\(\approx\) $\approx$
\(\equiv\) $\equiv$ \(\ll\) $\ll$
\(\sum\) $\sum$
\(\prod\) $\prod$ \(\sim\) $\sim$
\(\coprod\) $\coprod$ \(\backsim\) $\backsim$
\(\prec\) \(\preceq\) \(\succ\) \(\succeq\) $\prec$ $\preceq$ $\succ$ $\succeq$
对数运算符 markdown语言 戴帽符号 markdown语言 连线符号 markdown语言
\(\log\) $\log$ \(\hat{y}\) $\hat{y}$ \(\overline{a+b+c+d}\) $\overline{a+b+c+d}$
\(\lg\) $\lg$ \(\check{y}\) $\check{y}$ \(\underline{a+b+c+d}\) $\underline{a+b+c+d}$
\(\ln\) $\ln$ \(\breve{y}\) $\breve{y}$ \(\overbrace{a+\underbrace{b+c}{1.0}+d}^{2.0}\) $\overbrace{a+\underbrace{b+c}{1.0}+d}^{2.0}$

三角运算符 markdown语言 微积分运算符 markdown语言 逻辑运算符 markdown语言
\(\bot\) $\bot$ \(\prime\) $\prime$ \(\because\) $\because$
\(\angle\) $\angle$ \(\int\) $\int$ \(\therefore\) $\therefore$
\(30^\circ\) $30^\circ$ \(\iint\) $\iint$ \(\forall\) $\forall$
\(\sin\) $\sin$ \(\iiint\) $\iiint$ \(\exists\) $\exists$
\(\cos\) $\cos$ \(\iiiint\) $\iiiint$ \(\not=\) $\not=$
\(\tan\) $\tan$ \(\oint\) $\oint$ \(\not>\) $\not>$
\(\cot\) $\cot$ \(\lim\) $\lim$ \(\not\subset\) $\not\subset$
\(\sec\) $\sec$ \(\infty\) $\infty$
\(\csc\) $\csc$ \(\nabla\) $\nabla$
箭头符号 markdown语言
\(\uparrow\) $\uparrow$
\(\downarrow\) $\downarrow$
\(\Uparrow\) $\Uparrow$
\(\Downarrow\) $\Downarrow$
\(\rightarrow\) $\rightarrow$
\(\leftarrow\) $\leftarrow$
\(\Rightarrow\) $\Rightarrow$
\(\Leftarrow\) $\Leftarrow$
\(\longrightarrow\) $\longrightarrow$
\(\longleftarrow\) $\longleftarrow$
\(\Longrightarrow\) $\Longrightarrow$
\(\Longleftarrow\) $\Longleftarrow$
\(f: {\mathbf x_t} \mapsto {\mathbf y_t}\) $f: {\mathbf x_t} \mapsto {\mathbf y_t}$
\(\Longleftrightarrow\) \Longleftrightarrow

更多关于箭头的符号见:MathJax 支持的 Latex 符号总结(各种箭头符号)


特殊符号

  • \(\boldsymbol{\hat y} = \boldsymbol{W} \boldsymbol{x}\) 的输入

    代码:
$\boldsymbol{\hat y} = \boldsymbol{W} \boldsymbol{x}$
  • \(\ell_p\) 范数: $\ell_p$

对于一些特殊的数学符号可以使用 \operatorname{} 或者 \text{} 来进行转换,如:$\text{cov}$$\operatorname{s.t.}$ 便显示为:\(\text{cov}\) 和 \(\operatorname{s.t.}\)

还有:

$A \xrightarrow{f} B \; a \; \bot b \; \overset{def}{=}$

\(A \xrightarrow{f} B \; a \; \bot b \; \overset{def}{=}\)

$$
\underset{x\in S\subseteq X}{\operatorname{arg\,max}}\, f(x) := \{x \mid x\in S \wedge \forall y \in S : f(y) \le f(x)\}.
$$

\[ \underset{x\in S\subseteq X}{\operatorname{arg\,max}}\, f(x) := \{x \mid x\in S \wedge \forall y \in S : f(y) \le f(x)\}.
\]

$$
\operatorname*{\arg\max}_{x\in S\subseteq X}\, f(x) := \{x \mid x\in S \wedge \forall y \in S : f(y) \le f(x)\}.
$$

\[\operatorname*{\arg\max}_{x \in S \subseteq X}\, f(x) := \{x \mid x\in S \wedge \forall y \in S : f(y) \le f(x)\}.
\]

对齐多行公式

$$
\begin{aligned}
a &= b^2 + c^2\\
&= w^3 + b
\end{aligned}
$$

显示:

\[\begin{aligned}
a &= b^2 + c^2\\
&= w^3 + b
\end{aligned}
\]

关于矩阵的语法

$$
\begin{Bmatrix}
1&2&3\\
4&5&6\\
7&8&9
\end{Bmatrix}
\tag{7}
$$

显示:

\[\begin{Bmatrix}
1&2&3\\
4&5&6\\
7&8&9
\end{Bmatrix}
\tag{7}
\]

更多矩阵设计:

$$
\begin{vmatrix}
1&2&3\\
4&5&6\\
7&8&9
\end{vmatrix}
\tag{8}
$$ $$
\begin{Vmatrix}
1&2&3\\
4&5&6\\
7&8&9
\end{Vmatrix}
\tag{9}
$$ $$
\bigl(
\begin{smallmatrix}
...
\end{smallmatrix}
\bigr)
$$ $$
\left[
\begin{array}{cc|c}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}
\right] \tag{12}
$$

显示:

\[\begin{vmatrix}
1&2&3\\
4&5&6\\
7&8&9
\end{vmatrix}
\tag{8}
\]

\[\begin{Vmatrix}
1&2&3\\
4&5&6\\
7&8&9
\end{Vmatrix}
\tag{9}
\]

\[\bigl(
\begin{smallmatrix}
...
\end{smallmatrix}
\bigr)
\]

\[\left[
\begin{array}{cc|c}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}
\right] \tag{12}
\]

Markdown公式(二)的更多相关文章

  1. Markdown公式编辑

    一.公式使用参考 1.如何插入公式 行中公式(放在文中与其它文字混编)可以用如下方法表示:$ 数学公式 $ 独立公式可以用如下方法表示:$$ 数学公式 $$ 自动编号的公式可以用如下方法表示: 若需要 ...

  2. Markdown 公式整理

    Cmd Markdown 公式指导手册 摘自:Cmd Markdown 公式指导手册 - 作业部落 Cmd Markdown 编辑阅读器 Cmd Markdown 简明语法手册 Cmd Markdow ...

  3. Markdown公式编辑学习笔记

    一.公式使用参考 1.如何插入公式 行中公式(放在文中与其它文字混编)可以用如下方法表示:$ 数学公式 $ 独立公式可以用如下方法表示:$$ 数学公式 $$ 自动编号的公式可以用如下方法表示: 若需要 ...

  4. 【转载】Cmd Markdown 公式指导手册

    目录 Cmd Markdown 公式指导手册 一.公式使用参考 1.如何插入公式 2.如何输入上下标 3.如何输入括号和分隔符 4.如何输入分数 5.如何输入开方 6.如何输入省略号 7.如何输入矢量 ...

  5. markdown公式指导手册

    #Cmd Markdown 公式指导手册 标签: Tutorial 转载于https://www.zybuluo.com/codeep/note/163962#1%E5%A6%82%E4%BD%95% ...

  6. 常用Markdown公式整理 && 页内跳转注意 && Markdown preview

    目录: 常用Markdown公式及注意事项 标题 列表 链接 区块 代码块 / 引用  粗体和斜体 文字块 图片 表格 横线 页内跳转注意事项 其他重要需注意 Markdown preview 前提: ...

  7. [转]Markdown 公式指导手册(包含LaTeX)

    Cmd Markdown 公式指导手册 本文为转载文章,并且由于LaTeX的可能不能全部兼容,所以可能有部分公式无法在博客园显示,可以移步原网站. 本文固定链接: https://www.zybulu ...

  8. markdown 公式编写及不同平台公式转换

    1.markdown 用法及公式编写,这块就不再重复,已有很多官方平台的文档说明很完善 有道云markdown写作文档 在博客园中插入公式 markdown公式输入(特殊符号) markdown 特殊 ...

  9. Markdown 公式指导手册

    本文为 Markdown 环境下的常用语法指引.Typora 编辑阅读器支持 \(\LaTeX\) 编辑显示支持,例如:\(\sum_{i=1}^n a_i=0\),访问 MathJax 以参考更多使 ...

随机推荐

  1. 删除方法odoo

          ##判断删除情况,不允许删除def unlink(self,cr,uid,ids,context=None): raise osv.except_osv(u'警告!',u'单据不允许删除' ...

  2. 允许Ubuntu系统下Mysql数据库远程连接

    第一步: vim /etc/mysql/my.cnf找到bind-address = 127.0.0.1 注释掉这行,如:#bind-address = 127.0.0.1 或者改为: bind-ad ...

  3. git reset之后找回本地未提交的代码

    头脑发热使用了git reset命令回退到了之前的一个版本,结果把本地没有提交的代码给覆盖掉了..... 作为一个bug员自然是想恢复,毕竟重新写还得再测一遍,本着能懒一点是一点的原则,开始了恢复代码 ...

  4. Android Environment.getExternalStorageDirectory() 获取的是内部存储还是外部存储? - z

    这几天在做Android应用的远程更新功能,将下载的更新包放在移动设备上指定的目录.用的是  Environment.getExternalStorageDirectory() 这个方法,然后在获取的 ...

  5. 20155325 Exp7 网络欺诈防范

    实践内容(3.5分) 本实践的目标理解常用网络欺诈背后的原理,以提高防范意识,并提出具体防范方法.具体实践有 (1)简单应用SET工具建立冒名网站 (1分) (2)ettercap DNS spoof ...

  6. LOJ#2799. 「CCC 2016」生命之环

    题意 给你一个 \(n\) 个 \(\rm 01\) 组成的环,每次操作之后每个位置为1当且仅当他的左右恰好有1个1.输出进行 \(T\) 次操作之后的环. \(n\leq 10^5, T\leq 1 ...

  7. [Mark]Tomcat/IIS 更改 HTTP 侦听端口

    目的: IIS HTTP 侦听端口改为 8088 Tomcat HTTP 侦听端口改为 80 环境: Windows Server 2012 R2 IIS8.5 (默认端口是 80) Tomcat8. ...

  8. 设计模式 笔记 适配器模式 Adapter

    //---------------------------15/04/13---------------------------- //Adapter 适配器模式 ----类对象结构型模式 /* 1: ...

  9. Python RASP 工程化:一次入侵的思考

    前言 今天讲的内容会很深,包括一些 Python的高级用法和一些自己创造的黑科技,前半部分内容你们可能听过,后半部分内容就真的是黑科技了... 深入的研究和思考,总会发现很多有意思的东西.每一次的研究 ...

  10. 一款基于Zigbee技术的智慧鱼塘系统研究与设计

    在现代鱼塘养鱼中,主要困扰渔农的就是养殖成本问题.而鱼塘养殖成本最高的就是养殖的人工费,喂养的饲料费和鱼塘中高达几千瓦增氧机的消耗的电费.实现鱼塘自动化养殖将会很好地解决上述问题,大大提高渔农的经济效 ...