题目描述

给定正整数序列 \(x_1 \sim x_n\) ,以下递增子序列均为非严格递增。

  1. 计算其最长递增子序列的长度 \(s\) 。

  2. 计算从给定的序列中最多可取出多少个长度为 \(s\) 的递增子序列。

  3. 如果允许在取出的序列中多次使用 \(x_1\) 和 \(x_n\) ,则从给定序列中最多可取出多少个长度为 \(s\) 的递增子序列。

输入格式

文件第 \(1\) 行有 \(1\) 个正整数 \(n\) ,表示给定序列的长度。接下来的 \(1\) 行有 \(n\) 个正整数 \(x_1 \sim x_n\) ​​。

输出格式

第 \(1\) 行是最长递增子序列的长度 \(s\) 。第 \(2\) 行是可取出的长度为 \(s\) 的递增子序列个数。第 \(3\) 行是允许在取出的序列中多次使用 \(x_1\) 和 \(x_n\) 时可取出的长度为 \(s\) 的递增子序列个数。

样例

样例输入

4
3 6 2 5

样例输出

2
2
3

数据范围与提示

\(1 \leq n \leq 500\)

题解

先用dp求出第一问的答案,和 \(f\) 数组,\(f[i]\) 代表以 \(i\) 为起点最长不下降子序列的长度

对于第二问,源点向 \(f[i]\) 等于第一问答案的点连边,\(f[i]=1\) 的点向汇点连边,中间的点 \(u\) 和点 \(v\) ,如果 \(f[u]=f[v]+1\) 且 \(a[u] \leq a[v]\) ,那么它们之间连边,这些边容量均为 \(1\) 。并且因为每个点只能用一次,所以拆点,中间连容量为 \(1\) 的边。跑最大流就是第二问的答案

对于第三问,把一号点和最后一个点的容量设为 \(inf\) 就好了

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=1000+10,MAXM=MAXN*MAXN+10,inf=0x3f3f3f3f;
int n,a[MAXN],f[MAXN],e=1,beg[MAXN],cur[MAXN],level[MAXN],nex[MAXM<<1],to[MAXM<<1],cap[MAXM<<1],clk,vis[MAXN],s,t,ans1;
std::queue<int> q;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y,int z)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
cap[e]=z;
to[++e]=x;
nex[e]=beg[y];
beg[y]=e;
cap[e]=0;
}
inline void dp()
{
for(register int i=1;i<=n;++i)f[i]=1;
for(register int i=n-1;i>=1;--i)
for(register int j=n;j>i;--j)
if(a[j]>=a[i])chkmax(f[i],f[j]+1);
for(register int i=1;i<=n;++i)chkmax(ans1,f[i]);
}
inline bool bfs()
{
memset(level,0,sizeof(level));
level[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
for(register int i=beg[x];i;i=nex[i])
if(cap[i]&&!level[to[i]])level[to[i]]=level[x]+1,q.push(to[i]);
}
return level[t];
}
inline int dfs(int x,int maxflow)
{
if(x==t||!maxflow)return maxflow;
int res=0;
vis[x]=clk;
for(register int &i=cur[x];i;i=nex[i])
if((vis[to[i]]^vis[x])&&cap[i]&&level[to[i]]==level[x]+1)
{
int nf=dfs(to[i],min(maxflow,cap[i]));
res+=nf;
cap[i]-=nf;
cap[i^1]+=nf;
maxflow-=nf;
if(!maxflow)break;
}
vis[x]=0;
return res;
}
inline int Dinic()
{
int res=0;
while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),res+=dfs(s,inf);
return res;
}
int main()
{
read(n);
for(register int i=1;i<=n;++i)read(a[i]);
dp();
s=n+n+1,t=s+1;
write(ans1,'\n');
for(register int i=1;i<=n;++i)
{
insert(i,i+n,1);
if(f[i]==ans1)insert(s,i,1);
if(f[i]==1)insert(i+n,t,1);
for(register int j=i+1;j<=n;++j)
if(a[j]>=a[i]&&f[i]==f[j]+1)insert(i+n,j,1);
}
write(Dinic(),'\n');
if(ans1==1)write(n,'\n');
else
{
e=0;clk=0;
memset(beg,0,sizeof(beg));
for(register int i=1;i<=n;++i)
{
if(i==1||i==n)
{
insert(i,i+n,inf);
if(f[i]==ans1)insert(s,i,inf);
if(f[i]==1)insert(i+n,t,inf);
}
else
{
insert(i,i+n,1);
if(f[i]==ans1)insert(s,i,1);
if(f[i]==1)insert(i+n,t,1);
}
for(register int j=i+1;j<=n;++j)
if(a[j]>=a[i]&&f[i]==f[j]+1)insert(i+n,j,1);
}
write(Dinic(),'\n');
}
return 0;
}

【刷题】LOJ 6005 「网络流 24 题」最长递增子序列的更多相关文章

  1. 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题

    题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...

  2. Libre 6005 「网络流 24 题」最长递增子序列 / Luogu 2766 最长递增子序列问题(网络流,最大流)

    Libre 6005 「网络流 24 题」最长递增子序列 / Luogu 2766 最长递增子序列问题(网络流,最大流) Description 问题描述: 给定正整数序列x1,...,xn . (1 ...

  3. [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划

    [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划 试题描述 一个餐厅在相继的 \(N\) 天里,第 \(i\) 天需要 \(R_i\) 块餐巾 \((i=l,2,-,N)\) ...

  4. [LOJ#6002]「网络流 24 题」最小路径覆盖

    [LOJ#6002]「网络流 24 题」最小路径覆盖 试题描述 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交)的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是  ...

  5. loj #6014. 「网络流 24 题」最长 k 可重区间集

    #6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...

  6. loj #6013. 「网络流 24 题」负载平衡

    #6013. 「网络流 24 题」负载平衡 题目描述 G 公司有 n nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n nn 个仓库的库存数量相同.搬运货物时 ...

  7. loj #6122. 「网络流 24 题」航空路线问题

    #6122. 「网络流 24 题」航空路线问题 题目描述 给定一张航空图,图中顶点代表城市,边代表两个城市间的直通航线.现要求找出一条满足下述限制条件的且途经城市最多的旅行路线. 从最西端城市出发,单 ...

  8. loj #6121. 「网络流 24 题」孤岛营救问题

    #6121. 「网络流 24 题」孤岛营救问题   题目描述 1944 年,特种兵麦克接到国防部的命令,要求立即赶赴太平洋上的一个孤岛,营救被敌军俘虏的大兵瑞恩.瑞恩被关押在一个迷宫里,迷宫地形复杂, ...

  9. loj #6226. 「网络流 24 题」骑士共存问题

    #6226. 「网络流 24 题」骑士共存问题   题目描述 在一个 n×n\text{n} \times \text{n}n×n 个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上 ...

随机推荐

  1. 【甘道夫】CDH5.2的Maven依赖

    之前一直结合Maven开发Hadoop2.2.0的程序.环境换成CDH5.2后报错,发现是Maven依赖库的问题. 之前一直使用 http://mvnrepository.com/ 查找maven依赖 ...

  2. OpenShift-EFK日志管理

    1.准备工作 思路: 在OpenShift容器平台上以daemonset方式部署Fluentd收集各节点中的日志.更改其配置让日志输出到外部Elasticsearch中,最终通过Kibana展示. 资 ...

  3. BZOJ3786: 星系探索 Splay+DFS序

    题目大意:给你一个树,支持三种操作,子树加,点到根的路径和,改变某一个点的父亲. 分析: 看起来像一个大LCT,但是很显然,LCT做子树加我不太会啊... 那么,考虑更换一个点的父亲这个操作很有意思, ...

  4. 20155316 《网络对抗》Exp8 Web基础

    实验内容 实验1:Web前端HTML 能正常安装.启停Apache.理解HTML,理解表单,理解GET与POST方法,编写一个含有表单的HTML. 1.开启Apache服务 思路:使用service ...

  5. [CF1059E]Split the Tree[贪心+树上倍增]

    题意 给定 \(n\) 个节点的树,点有点权 \(w\) ,划分成多条儿子到祖先的链,要求每条链点数不超过 \(L\) ,和不超过 \(S\),求最少划分成几条链. \(n\leq 10^5\) . ...

  6. iOSApp上下有黑边

    如图: 这种情况就是没有启动页导致的,加了启动页图片之后就不会再出现了. 设置启动页的方法: http://www.cnblogs.com/BK-12345/p/5218229.html 有的人说我加 ...

  7. 软件测试_测试工具_LoadRunner

    最近正在逐步学习软件测试工具的使用,此文章也是用来当做笔记以供记录之用.如有问题,还请多多指出. 安装LoadRunner基本步骤从网上搜索即可找到,特此提供部分链接参考(其中附带软件下载): 1.L ...

  8. Netty源码分析(前言, 概述及目录)

    Netty源码分析(完整版) 前言 前段时间公司准备改造redis的客户端, 原生的客户端是阻塞式链接, 并且链接池初始化的链接数并不高, 高并发场景会有获取不到连接的尴尬, 所以考虑了用netty长 ...

  9. Redmine 安装指南

    第一种方式 (一键安装): 准备工作: 1.最小化安装CentOS7 2.更新YUM源 3.更新系统关闭防火墙 yum -y update systemctl stop firewalld syste ...

  10. About The Algorithm Simplification

    For mode 1, you have to ergod all the data in the files. So the key point to solve this problem is t ...