Description

一棵树,支持三种操作,修改点权,修改颜色,问所有与他路径上颜色相同的点的最大权,包含这两个点.

Sol

LCT.

用LCT来维护重边,对于每个节点在建一个set用来维护轻边,这样Link和Cut是时候就非常好操作了,直接Access一下,Splay一下,直接删掉就可以了.

因为set是不统计重边的,然后对于每个节点的信息由他的父亲来保存,因为一个节点可能有很多儿子但一定只有一个父亲.

还有一个问题就是每个点的权值不能建全局的,因为维护的两颗LCT不能够同时删除,所以每个LCT都要有个点权的数组.

Code

/**************************************************************
Problem: 3639
User: BeiYu
Language: C++
Result: Accepted
Time:4060 ms
Memory:16276 kb
****************************************************************/ #include <bits/stdc++.h>
using namespace std; #define debug(a) cout<<#a<<"="<<a<<" "
typedef long long LL;
const int N = 1e5+50; inline int in(int x=0,char ch=getchar(),int v=1) {
while(ch>'9' || ch<'0') v=ch=='-'?-1:v,ch=getchar();
while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();return x*v; } int n,q;
vector < int > g[N];
int col[N],F[N]; struct LinkCutTree {
int f[N],ch[N][2];
int mx[N],w[N];
multiset< int,greater< int > > s[N]; #define lc(o) ch[o][0]
#define rc(o) ch[o][1] int isrt(int o) { return f[o]==0 || (lc(f[o])!=o && rc(f[o])!=o); }
void Update(int o) {
mx[o]=w[o];
if(!s[o].empty()) mx[o]=max(mx[o],*s[o].begin());
if(lc(o)) mx[o]=max(mx[o],mx[lc(o)]);
if(rc(o)) mx[o]=max(mx[o],mx[rc(o)]);
}
void Rot(int o) {
int p=f[o],k=f[p],r=rc(p)==o;
if(!isrt(p)) ch[k][rc(k)==p]=o;
f[ch[o][r^1]]=p,f[p]=o,f[o]=k;
ch[p][r]=ch[o][r^1],ch[o][r^1]=p;
Update(p),Update(o);
}
void Splay(int o) {
// cout<<"S"<<endl;
for(;!isrt(o);) {
int p=f[o],k=f[p];
if(isrt(p)) Rot(o);
else if((rc(p)==o)==(rc(k)==p)) Rot(p),Rot(o);
else Rot(o),Rot(o);
}Update(o);
}
void Access(int o) {
// cout<<"A"<<endl;
for(int p=0;o;p=o,o=f[o]) {
Splay(o);
if(rc(o)) s[o].insert(mx[rc(o)]);
if(rc(o)=p,p) s[o].erase(s[o].find(mx[p]));
}
}
void Link(int o) {
// cout<<"L"<<endl;
Access(F[o]),Splay(F[o]),Splay(o);
f[o]=F[o],rc(f[o])=o;
}
void Cut(int o) {
// cout<<"C"<<endl;
Access(o),Splay(o),f[lc(o)]=0,lc(o)=0;
}
void Change(int o,int v) {
// cout<<"M"<<endl;
Access(o),Splay(o),w[o]=v,Update(o);
}
int Query(int o) {
// cout<<"Q"<<endl;
Access(o),Splay(o);
int x=o;
for(;lc(x);x=lc(x));Splay(x);
if(col[x]!=col[o]) return mx[rc(x)];
else return mx[x];
}
}py[2]; void AddEdge(int u,int v) { g[u].push_back(v); }
void DFS(int u,int fa) {
for(int i=0,v;i<(int)g[u].size();i++) if((v=g[u][i])!=fa) {
F[v]=u,py[col[v]].f[v]=u;
DFS(v,u);
// debug(py[col[v]].mx[v])<<endl;
py[col[v]].s[u].insert(py[col[v]].mx[v]);
}py[0].Update(u),py[1].Update(u);
}
void init() {
n=in();
for(int i=1,u,v;i<n;i++) {
u=in(),v=in(),AddEdge(u,v),AddEdge(v,u);
}
for(int i=1;i<=n;i++) col[i]=in();
for(int i=1;i<=n;i++) py[0].mx[i]=py[0].w[i]=py[1].mx[i]=py[1].w[i]=in();
DFS(1,1);
// debug(py[1].mx[1])<<endl;
} int main() {
// freopen("in.in","r",stdin);
init();
for(int q=in();q--;) {
int opt=in(),u=in(),v;
if(opt==0) printf("%d\n",py[col[u]].Query(u));
else if(opt==1) {
if(F[u]) py[col[u]].Cut(u);
col[u]^=1;
if(F[u]) py[col[u]].Link(u);
} else {
v=in();
py[0].Change(u,v);
py[1].Change(u,v);
}
}
return 0;
}

  

BZOJ 3639: Query on a tree VII的更多相关文章

  1. BZOJ 3639: Query on a tree VII LCT_set维护子树信息

    用 set 维护子树信息,细节较多. Code: #include <cstring> #include <cstdio> #include <algorithm> ...

  2. bzoj 3637: Query on a tree VI 树链剖分 && AC600

    3637: Query on a tree VI Time Limit: 8 Sec  Memory Limit: 1024 MBSubmit: 206  Solved: 38[Submit][Sta ...

  3. bzoj3639: Query on a tree VII

    Description You are given a tree (an acyclic undirected connected graph) with n nodes. The tree node ...

  4. [BZOJ 3637]Query on a tree VI

    偶然看见了这题,觉得自己 QTREE.COT 什么的都没有刷过的真是弱爆了…… 一道思路很巧妙的题,终于是在约大爷的耐心教导下会了,真是太感谢约大爷了. 这题显然是树链剖分,但是链上维护的东西很恶心. ...

  5. 2019.02.17 spoj Query on a tree VII(链分治)

    传送门 跟QTREE6QTREE6QTREE6神似,改成了求连通块里的最大值. 于是我们对每条链开一个heapheapheap维护一下即可. MDMDMD终于1A1A1A链分治了. 代码: #incl ...

  6. SP16580 QTREE7 - Query on a tree VII

    Description 一棵树,每个点初始有个点权和颜色(0/1) 0 u :询问所有u,v 路径上的最大点权,要满足u,v 路径上所有点的颜色都相同 1 u :反转u 的颜色 2 u w :把u 的 ...

  7. BZOJ 3637: Query on a tree VI LCT_维护子树信息_点权转边权_好题

    非常喜欢这道题. 点权转边权,这样每次在切断一个点的所有儿子的时候只断掉一条边即可. Code: #include <cstring> #include <cstdio> #i ...

  8. [spojQTREE7]Query on a tree VII

    即QTREE5和QTREE6组合,即将原本维护子树范围内点数改为维护子树范围内最小值即可,由于最小值没有可减性,因此需要使用set (虽然形式上与QTREE5类似,但QTREE5维护的信息更巧妙一些, ...

  9. BZOJ 1803 Query on a tree III

    树上主席树. 我靠这是第k小吧..... #include<iostream> #include<cstdio> #include<cstring> #includ ...

随机推荐

  1. [LeetCode] Intersection of Two Arrays 两个数组相交

    Given two arrays, write a function to compute their intersection. Example:Given nums1 = [1, 2, 2, 1] ...

  2. [LeetCode] Generalized Abbreviation 通用简写

    Write a function to generate the generalized abbreviations of a word. Example: Given word = "wo ...

  3. [LeetCode] First Bad Version 第一个坏版本

    You are a product manager and currently leading a team to develop a new product. Unfortunately, the ...

  4. [LeetCode] Search a 2D Matrix II 搜索一个二维矩阵之二

    Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the follo ...

  5. pImpl

    之前看代码,一直对pIml这个用法一知半解,参考这里 的一篇文章后有所收获. 总结一下,pIml的好处如下: 第一,引入更多的头文件降低编译速度.而且这个声明当然写在一个头文件里,而头文件,是不能预编 ...

  6. 用vue.js学习es6(一):基本工具及配置

    一.工具: sublime,node.js,npm 1.安装sublime 的es6插件: (1).在sublime中按Ctrl+`调出console (2).粘贴以下代码到底部命令行并回车(subl ...

  7. sql 代码笔记

    1. if() 函数 推荐一个学习MySQL的网站  Study MySql

  8. 【hrbust2294】修建传送门

    题意 哈理工2016级新生程序设计全国邀请赛B题 n个点1~n,i到i+1的距离为a[i],现在可以在两个点之间建一个传送门,则两点之间距离为0,求建传送门后1号出发的最远距离最小是多少? 题解 a[ ...

  9. jquery的几种ajax提交方式

    $.post( url, function(data){ if(data.retcode == "0"){ alert(data.retmsg); }else{ alert(dat ...

  10. C#面向对象设计模式纵横谈——4.Builder 生成器模式(创建型模式)

    动机 (Motivation) 在软件系统中,有时候面临着“一个复杂对象”的创建工作,其通常由各个部分的子对象用一定的算法构成:由于需求的变化,这个复杂对象的各个部分经常面临着剧烈的变化,但是它们组合 ...