Rain on your Parade

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 655350/165535 K (Java/Others)
Total Submission(s): 4728    Accepted Submission(s): 1552

Problem Description

You’re giving a party in the garden of your villa by the sea. The party is a huge success, and everyone is here. It’s a warm, sunny evening, and a soothing wind sends fresh, salty air from the sea. The evening is progressing just as you had imagined. It could be the perfect end of a beautiful day.
But nothing ever is perfect. One of your guests works in weather forecasting. He suddenly yells, “I know that breeze! It means its going to rain heavily in just a few minutes!” Your guests all wear their best dresses and really would not like to get wet, hence they stand terrified when hearing the bad news.
You have prepared a few umbrellas which can protect a few of your guests. The umbrellas are small, and since your guests are all slightly snobbish, no guest will share an umbrella with other guests. The umbrellas are spread across your (gigantic) garden, just like your guests. To complicate matters even more, some of your guests can’t run as fast as the others.
Can you help your guests so that as many as possible find an umbrella before it starts to pour?

Given the positions and speeds of all your guests, the positions of the umbrellas, and the time until it starts to rain, find out how many of your guests can at most reach an umbrella. Two guests do not want to share an umbrella, however.

 

Input

The input starts with a line containing a single integer, the number of test cases.
Each test case starts with a line containing the time t in minutes until it will start to rain (1 <=t <= 5). The next line contains the number of guests m (1 <= m <= 3000), followed by m lines containing x- and y-coordinates as well as the speed si in units per minute (1 <= si <= 3000) of the guest as integers, separated by spaces. After the guests, a single line contains n (1 <= n <= 3000), the number of umbrellas, followed by n lines containing the integer coordinates of each umbrella, separated by a space.
The absolute value of all coordinates is less than 10000.
 

Output

For each test case, write a line containing “Scenario #i:”, where i is the number of the test case starting at 1. Then, write a single line that contains the number of guests that can at most reach an umbrella before it starts to rain. Terminate every test case with a blank line.
 

Sample Input

2
1
2
1 0 3
3 0 3
2
4 0
6 0
1
2
1 1 2
3 3 2
2
2 2
4 4
 

Sample Output

Scenario #1:
2

Scenario #2:
2

 

Source

 
匈牙利算法 复杂度:V×E, 本题TLE
转换为网络流模型,跑dinic? 本题MLE
所以,只能用Hopcroft_Karp。复杂度:sqrt(V)×E
V为点数,E为边数。
//2017-08-26
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue> using namespace std; const int N = ;
const int M = ;
const int INF = 0x3f3f3f3f;
int head[N], tot;
struct Edge{
int to, next;
}edge[M]; void add_edge(int u, int v){
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
} //xlink[i]表示左集合顶点i匹配的右集合的点,ylink[i]表示右集合顶点i匹配的左集合的点
int xlink[N], ylink[N];
//xlevel[i]表示左集合顶点i的所在层数,ylevel[i]表示右集合顶点i的所在层数
int xlevel[N], ylevel[N];
bool vis[N];
struct Hopcroft_Karp{
int dis, xn, yn;//xn表示左集合顶点个数,yn表示右集合顶点个数
void init(int _xn, int _yn){
tot = ;
xn = _xn;
yn = _yn;
memset(head, -, sizeof(head));
memset(xlink, -, sizeof(xlink));
memset(ylink, -, sizeof(ylink));
}
bool bfs(){
queue<int> que;
dis = INF;
memset(xlevel, -, sizeof(xlevel));
memset(ylevel, -, sizeof(ylevel));
for(int i = ; i < xn; i++)
if(xlink[i] == -){
que.push(i);
xlevel[i] = ;
}
while(!que.empty()){
int u = que.front();
que.pop();
if(xlevel[u] > dis)break;
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].to;
if(ylevel[v] == -){
ylevel[v] = xlevel[u] + ;
if(ylink[v] == -)
dis = ylevel[v];
else{
xlevel[ylink[v]] = ylevel[v]+;
que.push(ylink[v]);
}
}
}
}
return dis != INF;
}
int dfs(int u){
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].to;
if(!vis[v] && ylevel[v] == xlevel[u]+){
vis[v] = ;
if(ylink[v] != - && ylevel[v] == dis)
continue;
if(ylink[v] == - || dfs(ylink[v])){
xlink[u] = v;
ylink[v] = u;
return ;
}
}
}
return ;
}
//二分图最大匹配
//input:建好的二分图
//output:ans 最大匹配数
int max_match(){
int ans = ;
while(bfs()){
memset(vis, , sizeof(vis));
for(int i = ; i < xn; i++)
if(xlink[i] == -)
ans += dfs(i);
}
return ans;
}
}hk_match; int n, m, pour_time;
struct Guests{
int x, y, speed;
}guests[N]; struct Umbrella{
int x, y;
}umbrella[N]; bool getUmbrella(int i, int j){
return (guests[i].x-umbrella[j].x)*(guests[i].x-umbrella[j].x)
+ (guests[i].y-umbrella[j].y)*(guests[i].y-umbrella[j].y)
<= guests[i].speed*guests[i].speed*pour_time*pour_time;
} int main()
{
std::ios::sync_with_stdio(false);
//freopen("inputF.txt", "r", stdin);
int T, kase = ;
cin>>T;
while(T--){
cin>>pour_time>>m;
for(int i = ; i < m; i++)
cin>>guests[i].x>>guests[i].y>>guests[i].speed;
cin>>n;
for(int i = ; i < n; i++)
cin>>umbrella[i].x>>umbrella[i].y;
hk_match.init(m, n);
for(int i = ; i < m; i++)
for(int j = ; j < n; j++)
if(getUmbrella(i, j))
add_edge(i, j);
cout<<"Scenario #"<<++kase<<":"<<endl<<hk_match.max_match()<<endl<<endl;
} return ;
}

HDU2389(KB10-F 二分图最大匹配Hopcroft_Karp)的更多相关文章

  1. HDU2389 Rain on your Parade —— 二分图最大匹配 HK算法

    题目链接:https://vjudge.net/problem/HDU-2389 Rain on your Parade Time Limit: 6000/3000 MS (Java/Others)  ...

  2. [HDU] 2063 过山车(二分图最大匹配)

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=2063 女生为X集合,男生为Y集合,求二分图最大匹配数即可. #include<cstdio> ...

  3. [POJ] 1274 The Perfect Stall(二分图最大匹配)

    题目地址:http://poj.org/problem?id=1274 把每个奶牛ci向它喜欢的畜栏vi连边建图.那么求最大安排数就变成求二分图最大匹配数. #include<cstdio> ...

  4. 二分图最大匹配:匈牙利算法的python实现

    二分图匹配是很常见的算法问题,一般用匈牙利算法解决二分图最大匹配问题,但是目前网上绝大多数都是C/C++实现版本,没有python版本,于是就用python实现了一下深度优先的匈牙利算法,本文使用的是 ...

  5. bzoj 1854: [Scoi2010]游戏 (并查集||二分图最大匹配)

    链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1854 写法1: 二分图最大匹配 思路:  将武器的属性对武器编号建边,因为只有10000种 ...

  6. 二分图最大匹配|UOJ#78|匈牙利算法|边表|Elena

    #78. 二分图最大匹配 从前一个和谐的班级,有 nlnl 个是男生,有 nrnr 个是女生.编号分别为 1,…,nl1,…,nl 和 1,…,nr1,…,nr. 有若干个这样的条件:第 vv 个男生 ...

  7. HDU 1045 - Fire Net - [DFS][二分图最大匹配][匈牙利算法模板][最大流求二分图最大匹配]

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1045 Time Limit: 2000/1000 MS (Java/Others) Mem ...

  8. 【二分】【字符串哈希】【二分图最大匹配】【最大流】XVII Open Cup named after E.V. Pankratiev Stage 14, Grand Prix of Tatarstan, Sunday, April 2, 2017 Problem I. Minimum Prefix

    给你n个字符串,问你最小的长度的前缀,使得每个字符串任意循环滑动之后,这些前缀都两两不同. 二分答案mid之后,将每个字符串长度为mid的循环子串都哈希出来,相当于对每个字符串,找一个与其他字符串所选 ...

  9. 【bzoj2044】三维导弹拦截 dp+二分图最大匹配

    题目描述 n个物品,第i个位置有ai.bi.ci三种属性.每次可以选出满足$\ a_{p_i}<a_{p_{i+1}}\ ,\ b_{p_i}<b_{p_{i+1}}\ ,\ c_{p_i ...

随机推荐

  1. CE+X64dbg外挂制作教程 [提高篇]

    人造指针&基址 实验目标:通过向游戏注入一段特殊汇编代码,实现自动获取动态地址.省略找基址的麻烦 为什么会出现人造指针 ? 1.基址偏移层数太多,很难找 2.有些游戏根本找不到基址 人造指针有 ...

  2. canvas 实现签名效果

    效果图 概述 在线签名,现在在很多场景下都能看到,而且在移动端见的比较多. 用canvas和svg都可以实现,而且跨平台能力也很好. canvas基于像素,提供 2D 绘制函数,提供的功能更原始,适合 ...

  3. css经典布局—Sticky footers布局

    参考:http://www.w3cplus.com/CSS3/css-secrets/sticky-footers.html 效果:将footer固定到底部.文章内容不足满屏时 footer在底部,超 ...

  4. 课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 0、学习目标

    1. Understand the major trends driving the rise of deep learning.2. Be able to explain how deep lear ...

  5. c++中的复合类型

    复合类型是指基于其他类型而定义的类型. 而这里介绍的是引用和指针.并且指针和引用都提供了对其他对象的间接访问. 引用 引用还是很好理解的,就是为对象起了另外一个名字,引用类型引用另外一种类型. 通常将 ...

  6. mac 查询端口被哪个进程占用

    1,查看端口被哪个程序占用sudo lsof -i tcp:port如: sudo lsof -i tcp:80802,看到进程的PID,可以将进程杀死.sudo kill -9 PID如:sudo ...

  7. 关于Spring Security中无Session和无状态stateless

    Spring Security是J2EE领域使用最广泛的权限框架,支持HTTP BASIC, DIGEST, X509, LDAP, FORM-AUTHENTICATION, OPENID, CAS, ...

  8. js字符串替换

    <script language="javascript">var r= "1\n2\n3\n";//将字母\n替换成分号alert(r.repla ...

  9. Silverlight中使用MVVM(1)--基础

    Silverlight中使用MVVM(1)--基础 Silverlight中使用MVVM(2)—提高 Silverlight中使用MVVM(3)—进阶 Silverlight中使用MVVM(4)—演练 ...

  10. 世界上最短的bash脚本

    世界上最短的bash脚本长这样: #!/bin/bash 为啥呢?见下图: 推荐一篇文章,讲解为啥shell脚本开头总是"#!/bin/bash".文风太清奇,不好翻译,看原文吧: ...