传送门

不难发现,所有不能被其他数筛掉的数是一定要选的,只有选了这些数字才能结束

假设有 \(m\) 个,枚举结束时间 \(x\),答案就是 \(\sum \binom{x-1}{m-1}m!(n-m)!x\)

埃氏筛法即可求出 \(m\)

# include <bits/stdc++.h>
using namespace std;
typedef long long ll; const int maxn(1e7 + 5);
const int mod(1e9 + 7); inline void Inc(int &x, const int y) {
x = x + y >= mod ? x + y - mod : x + y;
} int l, r, n, m, ans, fac[maxn], inv[maxn];
bitset <maxn> vis; int main() {
int i, j, k;
scanf("%d%d", &l, &r), n = r - l + 1;
if (l == 1) {
for (k = i = 1; i < n; ++i) k = (ll)k * i % mod;
ans = (ll)n * (n + 1) / 2 % mod * k % mod;
return printf("%d\n", ans), 0;
}
for (i = l; i <= r; ++i)
if (!vis[i]) for (++m, j = i; j <= r; j += i) vis[j] = 1;
inv[0] = inv[1] = fac[0] = fac[1] = 1;
for (i = 2; i <= n; ++i) inv[i] = (ll)(mod - mod / i) * inv[mod % i] % mod;
for (i = 2; i <= n; ++i) fac[i] = (ll)fac[i - 1] * i % mod, inv[i] = (ll)inv[i] * inv[i - 1] % mod;
for (i = m; i <= n; ++i) Inc(ans, (ll)fac[i] * inv[i - m] % mod);
ans = (ll)ans * m % mod * fac[n - m] % mod, printf("%d\n", ans);
return 0;
}

BZOJ5323:[JXOI2018]游戏的更多相关文章

  1. BZOJ5323 JXOI2018游戏(线性筛+组合数学)

    可以发现这个过程非常类似埃氏筛,将在该区间内没有约数的数定义为质数,那么也就是求每种方案中选完所有质数的最早时间之和. 于是先求出上述定义中的质数个数,线性筛即可.然后对每个最短时间求方案数,非常显然 ...

  2. BZOJ5323 [Jxoi2018]游戏 【数论/数学】

    题目链接 BZOJ5323 题解 有一些数是不能被别的数筛掉的 这些数出现最晚的位置就是该排列的\(t(p)\) 所以我们只需找出所有这些数,线性筛一下即可,设有\(m\)个 然后枚举最后的位置 \[ ...

  3. BZOJ5323 JXOI2018 游戏

    传送门 这是我见过的为数不多的良心九怜题之一. 题目大意 有一堆屋子,编号为$l,l+1...r-1,r$,你每次会走入一个没走入过的房子,然后这个房子以及编号为这个房子编号的倍数的房子就会被自动标记 ...

  4. 【BZOJ5323】[JXOI2018]游戏(组合计数,线性筛)

    [BZOJ5323][JXOI2018]游戏(组合计数,线性筛) 题面 BZOJ 洛谷 题解 显然要考虑的位置只有那些在\([l,r]\)中不存在任意一个约数的数. 假设这样的数有\(x\)个,那么剩 ...

  5. [JXOI2018]游戏 (线性筛,数论)

    [JXOI2018]游戏 \(solution:\) 这一道题的原版题面实在太负能量了,所以用了修改版题面. 这道题只要仔细读题,我们就可以将题目的一些基本性质分析出来:首先我们定义:对于某一类都可以 ...

  6. 【题解】JXOI2018游戏(组合数)

    [题解]JXOI2018游戏(组合数) 题目大意 对于\([l,r]\)中的数,你有一种操作,就是删除一个数及其所有倍数.问你删除所有数的所有方案的步数之和. 由于这里是简化题意,有一个东西没有提到: ...

  7. BZOJ5323 & 洛谷4562:[JXOI2018]游戏——题解

    https://www.luogu.org/problemnew/show/P4562 https://www.lydsy.com/JudgeOnline/problem.php?id=5323 (B ...

  8. luogu P4562 [JXOI2018]游戏 组合数学

    LINK:游戏 当L==1的时候 容易想到 答案和1的位置有关. 枚举1的位置 那么剩下的方案为(R-1)! 那么总答案为 (R+1)*R/2(R-1)! 考虑L==2的时候 对于一个排列什么时候会终 ...

  9. [JXOI2018]游戏

    嘟嘟嘟 九条可怜竟然有这种良心题,似乎稍稍刷新了我对九条可怜的认识. 首先假设我们求出了所有必须要筛出来的数m,那么\(t(p)\)就只受最后一个数的位置影响. 所以我们枚举最后一个数的位置,然后用组 ...

随机推荐

  1. C#6.0语言规范(十七) 特性

    许多C#语言使程序员能够指定有关程序中定义的实体的声明性信息.例如,在一个类中的方法的可访问性由与装饰它指定method_modifier小号public,protected,internal,和pr ...

  2. web安全之XSS注入

    之前在做项目的时候有遇到一些安全问题,XSS注入就是其中之一 那么,什么是XSS注入呢? XSS又叫CSS (Cross Site Script) ,跨站脚本攻击.它指的是恶意攻击者往Web页面里插入 ...

  3. Mac系统安装和卸载brew包管理

    brew 的官网地址  https://brew.sh/ 1.brew的安装 /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercon ...

  4. Win10 安装 digits

    安装caffe配置python接口 接下来就按照官方教程来安装了... 1. If the installation process complains compiler not found, you ...

  5. iOS---代理、协议、通知 详解

    一.代理 1.代理的介绍 代理是一种通用的设计模式 代理使用方式:A 让 B 做件事,空口无凭,签个协议. 所以代理有三部分组成: 委托方: 定义协议 协议   : 用来规定代理方可以做什么,必须做什 ...

  6. Java生成某段时间内的随机时间

    上代码: import java.text.SimpleDateFormat; import java.util.Date; public class DateUtil { /** * 生成随机时间 ...

  7. Linux下安装Nginx详细图解教程 (nginx-1.2.6)

    什么是Nginx? Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器,在高连接并发的情况下N ...

  8. Day.js - JavaScript时间处理库

    Day.js简介 在使用JavaScript处理时间方面,使用的时Moment.js,但是它太重了,有200多k,一般项目中可能也只是用了几个api而已,所以,这里推荐一个轻量的时间库 - Day.j ...

  9. Ruby:Open-uri和Net::HTTP的不同

    OpenURI不仅可以用来发起http请求,也可以发起https和ftp请求

  10. Struts框架核心工作流程与原理

    1.Struts2架构图  这是Struts2官方站点提供的Struts 2 的整体结构.  执行流程图 2.Struts2部分类介绍  这部分从Struts2参考文档中翻译就可以了. ActionM ...