传送门

不难发现,所有不能被其他数筛掉的数是一定要选的,只有选了这些数字才能结束

假设有 \(m\) 个,枚举结束时间 \(x\),答案就是 \(\sum \binom{x-1}{m-1}m!(n-m)!x\)

埃氏筛法即可求出 \(m\)

# include <bits/stdc++.h>
using namespace std;
typedef long long ll; const int maxn(1e7 + 5);
const int mod(1e9 + 7); inline void Inc(int &x, const int y) {
x = x + y >= mod ? x + y - mod : x + y;
} int l, r, n, m, ans, fac[maxn], inv[maxn];
bitset <maxn> vis; int main() {
int i, j, k;
scanf("%d%d", &l, &r), n = r - l + 1;
if (l == 1) {
for (k = i = 1; i < n; ++i) k = (ll)k * i % mod;
ans = (ll)n * (n + 1) / 2 % mod * k % mod;
return printf("%d\n", ans), 0;
}
for (i = l; i <= r; ++i)
if (!vis[i]) for (++m, j = i; j <= r; j += i) vis[j] = 1;
inv[0] = inv[1] = fac[0] = fac[1] = 1;
for (i = 2; i <= n; ++i) inv[i] = (ll)(mod - mod / i) * inv[mod % i] % mod;
for (i = 2; i <= n; ++i) fac[i] = (ll)fac[i - 1] * i % mod, inv[i] = (ll)inv[i] * inv[i - 1] % mod;
for (i = m; i <= n; ++i) Inc(ans, (ll)fac[i] * inv[i - m] % mod);
ans = (ll)ans * m % mod * fac[n - m] % mod, printf("%d\n", ans);
return 0;
}

BZOJ5323:[JXOI2018]游戏的更多相关文章

  1. BZOJ5323 JXOI2018游戏(线性筛+组合数学)

    可以发现这个过程非常类似埃氏筛,将在该区间内没有约数的数定义为质数,那么也就是求每种方案中选完所有质数的最早时间之和. 于是先求出上述定义中的质数个数,线性筛即可.然后对每个最短时间求方案数,非常显然 ...

  2. BZOJ5323 [Jxoi2018]游戏 【数论/数学】

    题目链接 BZOJ5323 题解 有一些数是不能被别的数筛掉的 这些数出现最晚的位置就是该排列的\(t(p)\) 所以我们只需找出所有这些数,线性筛一下即可,设有\(m\)个 然后枚举最后的位置 \[ ...

  3. BZOJ5323 JXOI2018 游戏

    传送门 这是我见过的为数不多的良心九怜题之一. 题目大意 有一堆屋子,编号为$l,l+1...r-1,r$,你每次会走入一个没走入过的房子,然后这个房子以及编号为这个房子编号的倍数的房子就会被自动标记 ...

  4. 【BZOJ5323】[JXOI2018]游戏(组合计数,线性筛)

    [BZOJ5323][JXOI2018]游戏(组合计数,线性筛) 题面 BZOJ 洛谷 题解 显然要考虑的位置只有那些在\([l,r]\)中不存在任意一个约数的数. 假设这样的数有\(x\)个,那么剩 ...

  5. [JXOI2018]游戏 (线性筛,数论)

    [JXOI2018]游戏 \(solution:\) 这一道题的原版题面实在太负能量了,所以用了修改版题面. 这道题只要仔细读题,我们就可以将题目的一些基本性质分析出来:首先我们定义:对于某一类都可以 ...

  6. 【题解】JXOI2018游戏(组合数)

    [题解]JXOI2018游戏(组合数) 题目大意 对于\([l,r]\)中的数,你有一种操作,就是删除一个数及其所有倍数.问你删除所有数的所有方案的步数之和. 由于这里是简化题意,有一个东西没有提到: ...

  7. BZOJ5323 & 洛谷4562:[JXOI2018]游戏——题解

    https://www.luogu.org/problemnew/show/P4562 https://www.lydsy.com/JudgeOnline/problem.php?id=5323 (B ...

  8. luogu P4562 [JXOI2018]游戏 组合数学

    LINK:游戏 当L==1的时候 容易想到 答案和1的位置有关. 枚举1的位置 那么剩下的方案为(R-1)! 那么总答案为 (R+1)*R/2(R-1)! 考虑L==2的时候 对于一个排列什么时候会终 ...

  9. [JXOI2018]游戏

    嘟嘟嘟 九条可怜竟然有这种良心题,似乎稍稍刷新了我对九条可怜的认识. 首先假设我们求出了所有必须要筛出来的数m,那么\(t(p)\)就只受最后一个数的位置影响. 所以我们枚举最后一个数的位置,然后用组 ...

随机推荐

  1. 题解 P2146 【[NOI2015]软件包管理器】

    题目大意 ​ 给你一棵树, 求一点到根的路径上有多少个未标记点并全标记, 和询问一个点的子树内有多少已标记点和撤销标记 解题方法 1: install 操作 ​ 这个操作是求一点到根的路径上有多少个未 ...

  2. Apache JMeter的基本使用

    安装 安装地址:http://jmeter.apache.org/download_jmeter.cgi 解压后运行jmeter.bat的批处理文件就可以了 JMeter测试脚本编写: 1,创建线程组 ...

  3. [Leetcode]123.买卖股票的最佳时机3

    [原题链接][https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-iii/] 分析:动态规划+二分法.以第i天为分界线,计 ...

  4. 10-01 Java 类,抽象类,接口的综合小练习--运动员和教练

    运动员和教练的案例分析 运动运和教练的案例 代码实现 /* 教练和运动员案例 乒乓球运动员和篮球运动员. 乒乓球教练和篮球教练. 为了出国交流,跟乒乓球相关的人员都需要学习英语. 请用所学知识: 分析 ...

  5. odoo 默认显示字段

    @api.multi def generate_customs_declaration(self): # if len(self.mapped('cus_goods_list_ids')) != 1: ...

  6. Tornado初探

    Tornado 是 FriendFeed 使用的可扩展的非阻塞式 web 服务器及其相关工具的开源版本.这个 Web 框架看起来有些像web.py 或者 Google 的 webapp,不过为了能有效 ...

  7. MySQL命令行登陆,远程登陆MySQL

    注: MySQL图形界面管理工具[navicat 10.1.8中文绿色版] 下载地址:http://www.t00y.com/file/18393836 备用地址:http://ProCircle.q ...

  8. PHP:判断客户端是否使用代理服务器及其匿名级别

    要判断客户端是否使用代理服务器,可以从客户端所发送的环境变量信息来判断. 具体来说,就是看HTTP_VIA字段,如果这个字段设置了,说明客户端使用了代理服务器. 匿名级别可以参考下表来判断. 给出一个 ...

  9. [转]网页实时聊天之js和jQuery实现ajax长轮询 PHP

    网页实时聊天之js和jQuery实现ajax长轮询 众所周知,HTTP协议是无状态的,所以一次的请求都是一个单独的事件,和前后都没有联系.所以我们在解决网页实时聊天时就遇到一个问题,如何保证与服务器的 ...

  10. 开启curl函数功能

    先打开php.ini文件 然后找到extension=php_curl.dll 这句话 然后把前面的:去掉,再重启apache服务 即可!