题目描述
在人类的神经系统中,每个信号都可以用?1或+1来表示。这些信号组合起来最后形成 了喜怒哀乐,酸甜苦辣,红黄绿蓝等各种各样的复杂信息。纳米探测科技的突破让生物学家 可以测量大脑中特定区域的完整逻辑功能。然而超大数据的处理一直是令 H 教授头疼的问 题。
 假设一个逻辑单元接受N个信号输入,并产生一个代表某种意义的实数值r。那么总共 可能的情况有2^N种。
通过长时间的累积测量, H 教授可以准确地获得输入信号与r的关系表:
 f:{-1,1}N →R  然而进一步研究发现,神经元的运算方式可以被建模为人们熟知的多项式。由于一个输 入
信号值的平方一定为1,所以我们可以用不含幂的2^N项的多项式来唯一表示任何一个逻辑f。 
例如
 x1 = +1; x2 = +1   x1 = +1; x2 = -1  x1 = -1; x2 = +1 x1 = -1; x2 = -1
        0                   1                2                3  
可以写成 f(x1,x2) = 1.5 - 0.5x2 - x1 研究一个逻辑单元的多项式形式对了解大脑工作十分有意义,于是
小 M 决定帮 H 教授 把测量出的逻辑关系表全部转换成多项式的形式。这么简单的工作一定难不倒编程能手
小M 的吧? 
题解
这题意思是给多项式的点值表达,让你把系数求出来。
关键是它的多项式很鬼畜,有x1,x2,还有x1,x2让人感觉很烦。
对于这么一个多项式a1+a2x1+a3x2+a4x1x2,我们把x1提出来,式子就变成了x1(a2+a4x2)+a1+a3x2。
把x1去掉,加号两边的东西是不是长得很像?
我们令两个点值表达只有x1不同,x1=-1时值为a,x1=1时值为b,那么左边那一坨就是(b-a)/2,右边那一坨就是(a+b)/2。
于是我们成功的把问题规模减小了一半。
其实这个思路和FFT几乎一模一样。
然后这道题的输出很诡异,要求字典序输出,可以用dfs实现。
还有我的操作有些鬼畜,导致最后分治出的序列和答案序列不一样,所以我又nlogn模拟了一遍把答案顺序排好。。
代码
#include<iostream>
#include<cstdio>
using namespace std;
typedef long long ll;
const int N=(<<)+;
double x;
int n,top,p[N];
char s[N];
inline int rd(){
int x=;char c=getchar();bool f=;
while(!isdigit(c)){if(c=='-')f=;c=getchar();}
while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
return f?-x:x;
}
ll gcd(ll x,ll y){if(x<)x=-x;if(y<)y=-y;return y?gcd(y,x%y):x;}
struct fs{
ll x,y;
fs operator +(const fs &b)const{
ll xx=x*b.y+y*b.x,yy=y*b.y*;
ll g=gcd(yy,xx);
xx/=g;yy/=g;
return fs{xx,yy};
}
fs operator -(const fs &b)const{
ll xx=x*b.y-y*b.x,yy=y*b.y*;
ll g=gcd(yy,xx);
xx/=g;yy/=g;
return fs{xx,yy};
}
}dp[N];
void dfs(int num,int x){
if(num>n)return;
p[++top]=x|(<<num-);
dfs(num+,x|(<<num-));dfs(num+,x);
}
int main(){
n=rd();
for(int i=;i<(<<n);++i){
int o=;scanf("%s%lf",s+,&x);
for(int j=;j<=n;++j){
o<<=;o|=(s[j]=='+'?:);
}
if(x>)dp[o].x=(int)(x*+0.1);//因为要向0取整,所以要判断正负
else dp[o].x=(int)(x*-0.1);
dp[o].y=;
ll g=gcd(dp[o].x,dp[o].y);
dp[o].x/=g;dp[o].y/=g;
}
for(int i=(<<n-);i>=;i>>=)
for(int j=;j<(<<n);j+=(i<<))
for(int k=;k<i;++k){
fs x=dp[k+j],y=dp[k+i+j];
dp[k+j]=y-x;dp[k+i+j]=x+y;
}
for(int i=;i<(<<n);++i){
int x=i,l=,r=(<<n)-;
while(l!=r){
int mid=(l+r)>>;
if(x&)r=mid;else l=mid+;x>>=;
}
if(l<i)swap(dp[l],dp[i]);
}
dfs(,);
for(int i=;i<(<<n);++i){
int x=p[i];
if(!dp[x].x)continue;
if(dp[x].y<)dp[x].y=-dp[x].y,dp[x].x=-dp[x].x;
if(dp[x].y!=)
printf("%lld/%lld ",dp[x].x,dp[x].y);
else printf("%lld ",dp[x].x);
for(int j=;j<=n;++j)if(x&(<<j-))printf("x%d",j);
printf("\n");
}
return ;
}
 

[HEOI2014]逻辑翻译(分治)的更多相关文章

  1. [HEOI2014]逻辑翻译

    ywy_c_asm的良心题解 是道好题 体现了二进制位的形象递归思想,以及将FWT的思路(都是拆位分治)用到题目中的典范 可以暴力高斯消元.完全没有利用2^N以及+-1的良好性质 发现项数,方程和二进 ...

  2. 洛谷 4106 / bzoj 3614 [HEOI2014]逻辑翻译——思路+类似FWT

    题目:https://www.luogu.org/problemnew/show/P4106 https://www.lydsy.com/JudgeOnline/problem.php?id=3614 ...

  3. 【Moqui业务逻辑翻译系列】Sales Representative Seeks Prospects and Opportunities 销售代表寻找期望合作对象和机会

    h1. Sales Representative Seeks Prospects and Opportunities 销售代表寻找期望合作对象和合作机会 h4. Ideas to incorporat ...

  4. 【Moqui业务逻辑翻译系列】Shipment Receiver Receives Shipment with Packing Slip but no PO

    Shipment Receiver receives shipment. It has invoice tucked into it. Receiver records vendor name, ve ...

  5. 【Moqui业务逻辑翻译系列】Story of Online Retail Company 在线零售公司的故事

    h1. Story of Online Retail Company 在线零售公司的故事 Someone decides to sell a product. [Product Marketer Ma ...

  6. 【Moqui业务逻辑翻译系列】--UBPL index

    h2. [UBPL Introduction] ubpl介绍h2. [Actor Definitions] 行为定义h2. General Business Process Stories 通常的商业 ...

  7. 【Moqui业务逻辑翻译系列】--UBPL Introduction同意的商业处理文库介绍

    h1. UBPL Introduction 通用的商业处理文库介绍h4. Why a Universal Business Process Library? 为什么需要通用的商业处理文库? The g ...

  8. 洛谷 P4106 / bzoj 3614 [ HEOI 2014 ] 逻辑翻译 —— 思路+递归

    题目:https://www.luogu.org/problemnew/show/P4106 https://www.lydsy.com/JudgeOnline/problem.php?id=3614 ...

  9. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

随机推荐

  1. Docker常规防止容器自动退出

    [root@server-crm /]# docker attach songheng [root@fc0a891e1861 /]# cat /bin/auto_service.sh #!/bin/s ...

  2. centos 6.9:device eth0 does not seem to be present

    VMware上安装centos6.9,克隆一个新虚机,网卡不能桥接获得宿主机网络地址. https://blog.csdn.net/xiaobei4929/article/details/405152 ...

  3. spring boot中log4j冲突问题和解决办法

    Spring Boot中自带了log4j日志管理.写法应该是: private static final Logger logger = Logger.getLogger(XXX.class); 而不 ...

  4. Velocity中判断是否为空

    方法一: 使用 #ifnull() 或 #ifnotnull() eg:#ifnull ($foo) 要使用这个特性必须在velocity.properties文件中加入: userdirective ...

  5. mysql5.7以上安装

    下载:https://dev.mysql.com/downloads/mysql/ 1.在解压的mysql下(bin目录统计),创建my.ini 文件,内容日下(路径根据自己的目录修改) [mysql ...

  6. 免费苹果账号(apple id)申请ios证书p12真机调试

    HBuilder可以直接打包越狱版的ipa包,但需要越狱手机才能安装,如果需要安装到没越狱的手机安装,需要自己申请ios证书打包. 一般是需要一个付费了的苹果开发者账号才能申请ios证书打包. 这里介 ...

  7. centOS 7下无法启动网络(service network start)错误解决办法

    今天在centOS 7下更改完静态ip后发现network服务重启不了,翻遍了网络,尝试了各种方法,终于解决了. 现把各种解决方法归纳整理,希望能让后面的同学少走点歪路... 首先看问题:执行serv ...

  8. keras中TimeDistributed的用法

    TimeDistributed这个层还是比较难理解的.事实上通过这个层我们可以实现从二维像三维的过渡,甚至通过这个层的包装,我们可以实现图像分类视频分类的转化. 考虑一批32个样本,其中每个样本是一个 ...

  9. Java-Spring-获取Request,Response对象

    转载自:https://www.cnblogs.com/bjlhx/p/6639542.html 第一种.参数 @RequestMapping("/test") @Response ...

  10. 基于create-react-app的再配置

    前面的话 使用Facebook官方推出的create-react-app脚手架,我们基本可以零配置搭建基于webpack的React开发环境.但是,如果需要个性化定制,则还需要基于create-rea ...