使用NetworkX模块绘制深度神经网络(DNN)结构图
本文将展示如何利用Python中的NetworkX模块来绘制深度神经网络(DNN)结构图。
在文章Keras入门(一)搭建深度神经网络(DNN)解决多分类问题中,我们创建的DNN结构图如下:

该DNN模型由输入层、隐藏层、输出层和softmax函数组成,每一层的神经元个数分别为4,5,6,3,3。不知道聪明的读者有没有发现,这张示意图完全是由笔者自己用Python绘制出来的,因为并不存在现成的结构图。那么,如何利用Python来绘制出这种相对复杂的神经网络的示意图呢?答案是利用NetworkX模块。
NetworkX是一个用Python语言开发的图论与复杂网络建模工具,内置了常用的图与复杂网络分析算法,可以方便地进行复杂网络数据分析、仿真建模等工作。NetworkX支持创建简单无向图、有向图和多重图,内置许多标准的图论算法,节点可为任意数据,支持任意的边值维度,功能丰富,简单易用。
首先,我们需要绘制出该DNN的大致框架,其Python代码如下:
# -*- coding:utf-8 -*-
import networkx as nx
import matplotlib.pyplot as plt
# 创建DAG
G = nx.DiGraph()
# 顶点列表
vertex_list = ['v'+str(i) for i in range(1, 22)]
# 添加顶点
G.add_nodes_from(vertex_list)
# 边列表
edge_list = [
('v1', 'v5'), ('v1', 'v6'), ('v1', 'v7'),('v1', 'v8'),('v1', 'v9'),
('v2', 'v5'), ('v2', 'v6'), ('v2', 'v7'),('v2', 'v8'),('v2', 'v9'),
('v3', 'v5'), ('v3', 'v6'), ('v3', 'v7'),('v3', 'v8'),('v3', 'v9'),
('v4', 'v5'), ('v4', 'v6'), ('v4', 'v7'),('v4', 'v8'),('v4', 'v9'),
('v5','v10'),('v5','v11'),('v5','v12'),('v5','v13'),('v5','v14'),('v5','v15'),
('v6','v10'),('v6','v11'),('v6','v12'),('v6','v13'),('v6','v14'),('v6','v15'),
('v7','v10'),('v7','v11'),('v7','v12'),('v7','v13'),('v7','v14'),('v7','v15'),
('v8','v10'),('v8','v11'),('v8','v12'),('v8','v13'),('v8','v14'),('v8','v15'),
('v9','v10'),('v9','v11'),('v9','v12'),('v9','v13'),('v9','v14'),('v9','v15'),
('v10','v16'),('v10','v17'),('v10','v18'),
('v11','v16'),('v11','v17'),('v11','v18'),
('v12','v16'),('v12','v17'),('v12','v18'),
('v13','v16'),('v13','v17'),('v13','v18'),
('v14','v16'),('v14','v17'),('v14','v18'),
('v15','v16'),('v15','v17'),('v15','v18'),
('v16','v19'),
('v17','v20'),
('v18','v21')
]
# 通过列表形式来添加边
G.add_edges_from(edge_list)
# 绘制DAG图
plt.title('DNN for iris') #图片标题
nx.draw(
G,
node_color = 'red', # 顶点颜色
edge_color = 'black', # 边的颜色
with_labels = True, # 显示顶点标签
font_size =10, # 文字大小
node_size =300 # 顶点大小
)
# 显示图片
plt.show()
可以看到,我们在代码中已经设置好了这22个神经元以及它们之间的连接情况,但绘制出来的结构如却是这样的:

这显然不是我们想要的结果,因为各神经的连接情况不明朗,而且很多神经都挤在了一起,看不清楚。之所以出现这种情况,是因为我们没有给神经元设置坐标,导致每个神经元都是随机放置的。
接下来,引入坐标机制,即设置好每个神经元节点的坐标,使得它们的位置能够按照事先设置好的来放置,其Python代码如下:
# -*- coding:utf-8 -*-
import networkx as nx
import matplotlib.pyplot as plt
# 创建DAG
G = nx.DiGraph()
# 顶点列表
vertex_list = ['v'+str(i) for i in range(1, 22)]
# 添加顶点
G.add_nodes_from(vertex_list)
# 边列表
edge_list = [
('v1', 'v5'), ('v1', 'v6'), ('v1', 'v7'),('v1', 'v8'),('v1', 'v9'),
('v2', 'v5'), ('v2', 'v6'), ('v2', 'v7'),('v2', 'v8'),('v2', 'v9'),
('v3', 'v5'), ('v3', 'v6'), ('v3', 'v7'),('v3', 'v8'),('v3', 'v9'),
('v4', 'v5'), ('v4', 'v6'), ('v4', 'v7'),('v4', 'v8'),('v4', 'v9'),
('v5','v10'),('v5','v11'),('v5','v12'),('v5','v13'),('v5','v14'),('v5','v15'),
('v6','v10'),('v6','v11'),('v6','v12'),('v6','v13'),('v6','v14'),('v6','v15'),
('v7','v10'),('v7','v11'),('v7','v12'),('v7','v13'),('v7','v14'),('v7','v15'),
('v8','v10'),('v8','v11'),('v8','v12'),('v8','v13'),('v8','v14'),('v8','v15'),
('v9','v10'),('v9','v11'),('v9','v12'),('v9','v13'),('v9','v14'),('v9','v15'),
('v10','v16'),('v10','v17'),('v10','v18'),
('v11','v16'),('v11','v17'),('v11','v18'),
('v12','v16'),('v12','v17'),('v12','v18'),
('v13','v16'),('v13','v17'),('v13','v18'),
('v14','v16'),('v14','v17'),('v14','v18'),
('v15','v16'),('v15','v17'),('v15','v18'),
('v16','v19'),
('v17','v20'),
('v18','v21')
]
# 通过列表形式来添加边
G.add_edges_from(edge_list)
# 指定绘制DAG图时每个顶点的位置
pos = {
'v1':(-2,1.5),
'v2':(-2,0.5),
'v3':(-2,-0.5),
'v4':(-2,-1.5),
'v5':(-1,2),
'v6': (-1,1),
'v7':(-1,0),
'v8':(-1,-1),
'v9':(-1,-2),
'v10':(0,2.5),
'v11':(0,1.5),
'v12':(0,0.5),
'v13':(0,-0.5),
'v14':(0,-1.5),
'v15':(0,-2.5),
'v16':(1,1),
'v17':(1,0),
'v18':(1,-1),
'v19':(2,1),
'v20':(2,0),
'v21':(2,-1)
}
# 绘制DAG图
plt.title('DNN for iris') #图片标题
plt.xlim(-2.2, 2.2) #设置X轴坐标范围
plt.ylim(-3, 3) #设置Y轴坐标范围
nx.draw(
G,
pos = pos, # 点的位置
node_color = 'red', # 顶点颜色
edge_color = 'black', # 边的颜色
with_labels = True, # 显示顶点标签
font_size =10, # 文字大小
node_size =300 # 顶点大小
)
# 显示图片
plt.show()
可以看到,在代码中,通过pos字典已经规定好了每个神经元节点的位置,那么,绘制好的DNN结构示意图如下:

可以看到,现在这个DNN模型的结构已经大致显现出来了。
接下来,我们需要对这个框架图进行更为细致地修改,需要修改的地方为:
- 去掉神经元节点的标签;
- 添加模型层的文字注释(比如Input layer).
其中,第二步的文字注释,我们借助opencv来完成。完整的Python代码如下:
# -*- coding:utf-8 -*-
import cv2
import networkx as nx
import matplotlib.pyplot as plt
# 创建DAG
G = nx.DiGraph()
# 顶点列表
vertex_list = ['v'+str(i) for i in range(1, 22)]
# 添加顶点
G.add_nodes_from(vertex_list)
# 边列表
edge_list = [
('v1', 'v5'), ('v1', 'v6'), ('v1', 'v7'),('v1', 'v8'),('v1', 'v9'),
('v2', 'v5'), ('v2', 'v6'), ('v2', 'v7'),('v2', 'v8'),('v2', 'v9'),
('v3', 'v5'), ('v3', 'v6'), ('v3', 'v7'),('v3', 'v8'),('v3', 'v9'),
('v4', 'v5'), ('v4', 'v6'), ('v4', 'v7'),('v4', 'v8'),('v4', 'v9'),
('v5','v10'),('v5','v11'),('v5','v12'),('v5','v13'),('v5','v14'),('v5','v15'),
('v6','v10'),('v6','v11'),('v6','v12'),('v6','v13'),('v6','v14'),('v6','v15'),
('v7','v10'),('v7','v11'),('v7','v12'),('v7','v13'),('v7','v14'),('v7','v15'),
('v8','v10'),('v8','v11'),('v8','v12'),('v8','v13'),('v8','v14'),('v8','v15'),
('v9','v10'),('v9','v11'),('v9','v12'),('v9','v13'),('v9','v14'),('v9','v15'),
('v10','v16'),('v10','v17'),('v10','v18'),
('v11','v16'),('v11','v17'),('v11','v18'),
('v12','v16'),('v12','v17'),('v12','v18'),
('v13','v16'),('v13','v17'),('v13','v18'),
('v14','v16'),('v14','v17'),('v14','v18'),
('v15','v16'),('v15','v17'),('v15','v18'),
('v16','v19'),
('v17','v20'),
('v18','v21')
]
# 通过列表形式来添加边
G.add_edges_from(edge_list)
# 指定绘制DAG图时每个顶点的位置
pos = {
'v1':(-2,1.5),
'v2':(-2,0.5),
'v3':(-2,-0.5),
'v4':(-2,-1.5),
'v5':(-1,2),
'v6': (-1,1),
'v7':(-1,0),
'v8':(-1,-1),
'v9':(-1,-2),
'v10':(0,2.5),
'v11':(0,1.5),
'v12':(0,0.5),
'v13':(0,-0.5),
'v14':(0,-1.5),
'v15':(0,-2.5),
'v16':(1,1),
'v17':(1,0),
'v18':(1,-1),
'v19':(2,1),
'v20':(2,0),
'v21':(2,-1)
}
# 绘制DAG图
plt.title('DNN for iris') #图片标题
plt.xlim(-2.2, 2.2) #设置X轴坐标范围
plt.ylim(-3, 3) #设置Y轴坐标范围
nx.draw(
G,
pos = pos, # 点的位置
node_color = 'red', # 顶点颜色
edge_color = 'black', # 边的颜色
font_size =10, # 文字大小
node_size =300 # 顶点大小
)
# 保存图片,图片大小为640*480
plt.savefig('E://data/DNN_sketch.png')
# 利用opencv模块对DNN框架添加文字注释
# 读取图片
imagepath = 'E://data/DNN_sketch.png'
image = cv2.imread(imagepath, 1)
# 输入层
cv2.rectangle(image, (85, 130), (120, 360), (255,0,0), 2)
cv2.putText(image, "Input Layer", (15, 390), 1, 1.5, (0, 255, 0), 2, 1)
# 隐藏层
cv2.rectangle(image, (190, 70), (360, 420), (255,0,0), 2)
cv2.putText(image, "Hidden Layer", (210, 450), 1, 1.5, (0, 255, 0), 2, 1)
# 输出层
cv2.rectangle(image, (420, 150), (460, 330), (255,0,0), 2)
cv2.putText(image, "Output Layer", (380, 360), 1, 1.5, (0, 255, 0), 2, 1)
# sofrmax层
cv2.rectangle(image, (530, 150), (570, 330), (255,0,0), 2)
cv2.putText(image, "Softmax Func", (450, 130), 1, 1.5, (0, 0, 255), 2, 1)
# 保存修改后的图片
cv2.imwrite('E://data/DNN.png', image)
这样生成的图片就是文章最开始给出的DNN的结构示意图。Bingo,搞定!
注意:本人现已开通微信公众号: Python爬虫与算法(微信号为:easy_web_scrape), 欢迎大家关注哦~~
使用NetworkX模块绘制深度神经网络(DNN)结构图的更多相关文章
- 深度神经网络DNN的多GPU数据并行框架 及其在语音识别的应用
深度神经网络(Deep Neural Networks, 简称DNN)是近年来机器学习领域中的研究热点,产生了广泛的应用.DNN具有深层结构.数千万参数需要学习,导致训练非常耗时.GPU有强大的计算能 ...
- 一天搞懂深度学习-训练深度神经网络(DNN)的要点
前言 这是<一天搞懂深度学习>的第二部分 一.选择合适的损失函数 典型的损失函数有平方误差损失函数和交叉熵损失函数. 交叉熵损失函数: 选择不同的损失函数会有不同的训练效果 二.mini- ...
- 深度神经网络(DNN)模型与前向传播算法
深度神经网络(Deep Neural Networks, 以下简称DNN)是深度学习的基础,而要理解DNN,首先我们要理解DNN模型,下面我们就对DNN的模型与前向传播算法做一个总结. 1. 从感知机 ...
- 神经网络6_CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)概念区分理解
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程,QQ:231469242) https://study.163.com/course/introduction.htm?courseId ...
- 深度神经网络(DNN)
深度神经网络(DNN) 深度神经网络(Deep Neural Networks, 以下简称DNN)是深度学习的基础,而要理解DNN,首先我们要理解DNN模型,下面我们就对DNN的模型与前向传播算法做一 ...
- 云中的机器学习:FPGA 上的深度神经网络
人工智能正在经历一场变革,这要得益于机器学习的快速进步.在机器学习领域,人们正对一类名为“深度学习”算法产生浓厚的兴趣,因为这类算法具有出色的大数据集性能.在深度学习中,机器可以在监督或不受监督的方式 ...
- Keras入门(一)搭建深度神经网络(DNN)解决多分类问题
Keras介绍 Keras是一个开源的高层神经网络API,由纯Python编写而成,其后端可以基于Tensorflow.Theano.MXNet以及CNTK.Keras 为支持快速实验而生,能够把 ...
- CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?
https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网 ...
- 深度神经网络(DNN)反向传播算法(BP)
在深度神经网络(DNN)模型与前向传播算法中,我们对DNN的模型和前向传播算法做了总结,这里我们更进一步,对DNN的反向传播算法(Back Propagation,BP)做一个总结. 1. DNN反向 ...
随机推荐
- Solr Cloud
bin/solr start -cloud -s example/cloud/node1/solr -p 8983 -z node13:2181,node14:2181,node15:2181/usr ...
- 28.TreeSet
与HashSet是基于HashMap实现一样,TreeSet同样是基于TreeMap实现的.在前一篇中详细讲解了TreeMap实现机制,如果客官详细看了这篇博文或者对TreeMap有比较详细的了解,那 ...
- 强大的jQGrid的傻瓜式使用方法。以及一些注意事项,备有相应的引入文件。
在介绍我的使用前,先按照国际惯例,列上网址http://blog.mn886.net/jqGrid/ 里面第一项就有相应的demo. 好,进入正题: 在学习到node.js的时候,需要使用到jQGri ...
- 包建强的培训课程(15):Android App热修复技术
@import url(/css/cuteeditor.css); Normal 0 10 pt 0 2 false false false EN-US ZH-CN X-NONE $([{£¥·‘“〈 ...
- weexpack打包weex项目运行/打包记录
构建weex项目 安装weex-toolkit cnpm install -g weex-toolkit 初始化一个项目只需新建文件夹并在目录下执行 weex init 即可 安装依赖:cnpm in ...
- 每天学点SpringCloud(十):SpringCloud监控
今天我们来学习一下actuator这个组件,它不是SpringCloud之后才有的,而是SpringBoot的一个starter,Spring Boot Actuator.我们使用SpringClou ...
- rem计算
//jquery实现 // $(function(){ // $(window).on("resize",function(){ // var width=$(window).wi ...
- PHP实现大文件下载
实现大文件下载的关键在于循环读取字节流 function downloadFile($filename) { //获取文件的扩展名 $allowDownExt = array ( 'rar', 'zi ...
- Python学习笔记【第九篇】:Python面向对象基础
Python语言中一切皆对象(类.属性.方法.........) 概念 面向对象编程:Object Oriented Programming 简称OOP 面向对象程序设计 面向对象和面向过程都是解决问 ...
- Oracle实战笔记(第一天)
导读 笔记内容来自韩顺平老师的视频<玩转Oracle实战教程>,可以结合笔记进行观看.第一天视频中还有Oracle的介绍和安装等内容,很容易搜索到,这里就不再进行总结. 目录 1.命令行工 ...