Luogu P3305 [SDOI2013]费用流 二分 网络流
题目链接 \(Click\) \(Here\)
非常有趣的一个题目。
关键结论:所有的单位费用应该被分配在流量最大的边上。
即:在保证最大流的前提下,使最大流量最小。这里我们采用二分的方法,每次判断让所有边的流量\(<=mid\)时是否依然有最大流,求得最小的最大流量\(*p\)即可。
为什么会有实数流量呢?其实我也不懂,不过这也造成这个题目需要把流量改成\(double\),有很多细节需要小心谨慎。。。
#include <bits/stdc++.h>
using namespace std;
const int N = 400010;
const int M = 400010;
const int INF = 0x3f3f3f3f;
int u[N], v[N], flow[N]; double f[N];
int n, m, p, cnt = -1, head[N];
struct edge {
int nxt, to; double f;
}e[M];
void add_edge (int from, int to, double flw) {
e[++cnt].nxt = head[from];
e[cnt].to = to;
e[cnt].f = flw;
head[from] = cnt;
}
void add_len (int u, int v, double f) {
add_edge (u, v, f);
add_edge (v, u, 0);
}
queue <int> q;
int cur[N], deep[N];
bool bfs (int s, int t) {
memcpy (cur, head, sizeof (head));
memset (deep, 0x3f, sizeof (deep));
deep[s] = 0; q.push (s);
while (!q.empty ()) {
int u = q.front (); q.pop ();
for (int i = head[u]; ~i; i = e[i].nxt) {
int v = e[i].to;
if (deep[v] == INF && fabs (e[i].f) > 1e-8) {
deep[v] = deep[u] + 1;
q.push (v);
}
}
}
return deep[t] != INF;
}
double dfs (int u, int t, double lim) {
if (u == t || fabs (lim) < 1e-8) {
return lim;
}
double tmp = 0, flow = 0;
for (int &i = cur[u]; ~i; i = e[i].nxt) {
int v = e[i].to;
if (deep[v] == deep[u] + 1) {
tmp = dfs (v, t, min (lim, e[i].f));
lim -= tmp;
flow += tmp;
e[i ^ 0].f -= tmp;
e[i ^ 1].f += tmp;
if (fabs (lim) < 1e-8) break;
}
}
return flow;
}
double Dinic (int s, int t) {
double res = 0;
while (bfs (s, t)) {
res += dfs (s, t, INF);
}
return res;
}
double max_flow;
bool can_use (double flw) {
cnt = -1; int s = 1, t = n;
memset (head, -1, sizeof (head));
for (int i = 1; i <= m; ++i) {
add_len (u[i], v[i], min (f[i], flw));
}
return fabs (Dinic (s, t) - max_flow) < 1e-8;
}
int main () {
memset (head, -1, sizeof (head));
cin >> n >> m >> p;
for (int i = 1; i <= m; ++i) {
cin >> u[i] >> v[i] >> f[i];
add_len (u[i], v[i], f[i]);
}
int s = 1, t = n; max_flow = Dinic (s, t);
printf ("%.0lf\n", max_flow);
double l = 0, r = INF;
while (r - l > 1e-8) {
double mid = (l + r) / 2.0;
if (can_use (mid)) {
r = mid;
} else {
l = mid;
}
}
printf ("%.4lf\n", r * p);
}
Luogu P3305 [SDOI2013]费用流 二分 网络流的更多相关文章
- luogu P3305 [SDOI2013]费用流
题目链接 bz似乎挂了... luogu P3305 [SDOI2013]费用流 题解 dalao告诉我,这题 似乎很水.... 懂了题目大意就可以随便切了 问1,最大流 问2,二分最大边权求,che ...
- 【bzoj3130】[Sdoi2013]费用流 二分+网络流最大流
题目描述 Alice和Bob做游戏,给出一张有向图表示运输网络,Alice先给Bob一种最大流方案,然后Bob在所有边上分配总和等于P的非负费用.Alice希望总费用尽量小,而Bob希望总费用尽量大. ...
- P3305 [SDOI2013]费用流
题目描述 Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识. 最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量. 一个合法的网络流方案必须满足: ...
- BZOJ3130 [Sdoi2013]费用流 【网络流 + 二分】
题目 Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识. 最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量.一个合法的网络流方案必须满足:(1)每 ...
- BZOJ3130: [Sdoi2013]费用流(二分,最大流)
Description Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识. 最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量.一个合法的网络 ...
- BZOJ 3130: [Sdoi2013]费用流 网络流+二分
3130: [Sdoi2013]费用流 Time Limit: 10 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 1230 Solved: ...
- BZOJ3130: [Sdoi2013]费用流[最大流 实数二分]
3130: [Sdoi2013]费用流 Time Limit: 10 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 960 Solved: 5 ...
- bzoj千题计划133:bzoj3130: [Sdoi2013]费用流
http://www.lydsy.com/JudgeOnline/problem.php?id=3130 第一问就是个最大流 第二问: Bob希望总费用尽量大,那肯定是把所有的花费加到流量最大的那一条 ...
- BZOJ 3130: [Sdoi2013]费用流 网络流 二分 最大流
https://www.lydsy.com/JudgeOnline/problem.php?id=3130 本来找费用流的题,权当复习一下网络流好了. 有点麻烦的是double,干脆判断大小或者二分增 ...
随机推荐
- 为什么int型最大的数是2147483647
32位的电脑中,用二进制表示,最大的就是32个1,用十进制表示为2^32-1,大概40多亿(4294967295) 对于有符号的,第一位用作表示正负(0,1),最大的就是31个1,用十进制表示为2^3 ...
- react 入坑笔记(二) - State
React State 一. state 大致思想:在 react 中,每个组件都是一个状态机,通过与用户的交互,实现不同状态,然后渲染 UI,让用户界面和数据保持一致.React 里,只需更新组件的 ...
- Coalesce (MS SQL Server)——取指定内容(列)中第一个不为空的值
oalesce 获得参数中第一个不为空的表达式. 语法: COALESCE ( expression [ ,...n ] ) 例子:CREATE TABLE wages ...
- Vuex的API文档
前面的话 本文将详细介绍Vuex的API文档 概述 import Vuex from 'vuex' const store = new Vuex.Store({ ...options }) [构造器选 ...
- oracle复习(二)
十一.replace 替换格式:(原字符串,要查找的字符或字符串,替换的字符或字符串)select replace('hello world','o','a') from dual; //替换时区分大 ...
- BZOJ3435[Wc2014]紫荆花之恋——动态点分治(替罪羊式点分树套替罪羊树)
题目描述 强强和萌萌是一对好朋友.有一天他们在外面闲逛,突然看到前方有一棵紫荆树.这已经是紫荆花飞舞的季节了,无数的花瓣以肉眼可见的速度从紫荆树上长了出来.仔细看看的话,这个大树实际上是一个带权树.每 ...
- Codeforces962F Simple Cycles Edges 【双连通分量】【dfs树】
题目大意: 给出一个无向图,问有哪些边只属于一个简单环. 题目分析: 如果这道题我们掌握了点双连通分量,那么结论会很显然,找到每个点双,如果一个n个点的点双正好由n条边构成,那么这些边都是可以的. 这 ...
- Hard Life UVA - 1389(最大密度子图 输出点集)
题意: rt 解析: 我用的第二种方法... s向所有的边连权值为1的边 所有的点向t连权值为mid的边 如果存在u - > v 则边向u和v分别连一条权值为INF的边 二分mid 用dfs ...
- Odoo
doc 文档 Technical Memento(pdf)是一个简短的参考,有点过时,但仍然不能错过. 目前的官方文档由研发团队积极维护. Nicolas Bessi撰写的新API指南可以提供官方文档 ...
- PHUML 生成UML类图操作流程
项目基础阶段: 安装svn,因为托管在svn平台上: 项目下载到本地,并切换到对应目录(如:F:\wwwroot\phuml.git\trunk\src\app): svn checkout http ...