题目描述

  给你\(n,m\),求所有\(n\)个点的简单无向图中每个点度数的\(m\)次方的和。

  \(n\leq {10}^9,m\leq {10}^5\)

题解

  \(g_n\)为\(n\)个点的无向图个数,\(f_n\)为\(n\)个点的答案。

\[\begin{align}
g_n&=2^{\binom{n}{2}}\\
f_n&=ng_{n-1}\sum_{i=0}^{n-1}\binom{n-1}{i}i^m\\
&=ng_{n-1}\sum_{i=0}^{n-1}\binom{n-1}{i}\sum_{j=0}^{i}\binom{i}{j}S(m,j)j!\\
&=ng_{n-1}\sum_{i=0}^{n-1}\sum_{j=0}^i\binom{n-1}{i}\binom{i}{j}S(m,j)j!\\
&=ng_{n-1}\sum_{i=0}^{n-1}\sum_{j=0}^i\binom{n-j}{j}\binom{n-1-i}{i-j}S(m,j)j!\\
&=ng_{n-1}\sum_{j=0}^m\binom{n-1}{j}S(m,j)j!\sum_{i=j}^{n-1}\binom{n-1-j}{i-j}\\
&=ng_{n-1}\sum_{j=0}^m{(n-1)}^\underline{j}S(m,j)2^{n-1-j}\\
\end{align}
\]

  用ntt算斯特林数

  时间复杂度:\(O(m\log m)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
ll p=998244353;
ll fp(ll a,ll b)
{
ll s=1;
while(b)
{
if(b&1)
s=s*a%p;
a=a*a%p;
b>>=1;
}
return s;
}
ll fc[300010];
ll ifc[300010];
ll a[300010];
ll b[300010];
int rev[300010];
void ntt(ll *a,int n,int t)
{
ll u,v,w,wn;
int i,j,k;
rev[0]=0;
for(i=1;i<n;i++)
rev[i]=(rev[i>>1]>>1)|(i&1?n>>1:0);
for(i=0;i<n;i++)
if(rev[i]<i)
swap(a[rev[i]],a[i]);
for(i=2;i<=n;i<<=1)
{
if(t==1)
wn=fp(3,(p-1)/i);
else
wn=fp(fp(3,(p-1)/i),p-2);
for(j=0;j<n;j+=i)
{
w=1;
for(k=j;k<j+i/2;k++)
{
u=a[k];
v=a[k+i/2]*w%p;
a[k]=(u+v)%p;
a[k+i/2]=(u-v)%p;
w=w*wn%p;
}
}
}
if(t==-1)
{
ll inv=fp(n,p-2);
for(i=0;i<n;i++)
a[i]=a[i]*inv%p;
}
}
ll c[300010];
int main()
{
// freopen("b.in","r",stdin);
// freopen("b.out","w",stdout);
int n,m;
scanf("%d%d",&n,&m);
fc[0]=fc[1]=ifc[0]=ifc[1]=1;
int i;
int t=min(n-1,m);
for(i=2;i<=t;i++)
{
fc[i]=fc[i-1]*i%p;
ifc[i]=ifc[i-1]*fp(i,p-2)%p;
}
for(i=0;i<=t;i++)
{
a[i]=(i&1?-1:1)*ifc[i];
b[i]=fp(i,m)*ifc[i]%p;
}
int k=1;
while(k<=2*t)
k<<=1;
ntt(a,k,1);
ntt(b,k,1);
for(i=0;i<k;i++)
a[i]=a[i]*b[i]%p;
ntt(a,k,-1);
for(i=0;i<k;i++)
a[i]=(a[i]%p+p)%p;
ll ans=0;
c[0]=1;
for(i=1;i<=t;i++)
c[i]=c[i-1]*(n-i)%p;
for(i=0;i<=t;i++)
ans=(ans+c[i]%p*a[i]%p*fp(2,n-1-i)%p)%p;
ans=ans*n%p*fp(2,ll(n-1)*(n-2)/2%(p-1))%p;
printf("%lld\n",ans);
return 0;
}

【XSY1301】原题的价值 第二类斯特林数 NTT的更多相关文章

  1. BZOJ 5093: [Lydsy1711月赛]图的价值 第二类斯特林数+NTT

    定义有向图的价值为图中每一个点的度数的 \(k\) 次方之和. 求:对于 \(n\) 个点的无向图所有可能情况的图的价值之和. 遇到这种题,八成是每个点单独算贡献,然后累加起来. 我们可以枚举一个点的 ...

  2. bzoj 5093 图的价值 —— 第二类斯特林数+NTT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5093 每个点都是等价的,从点的贡献来看,得到式子: \( ans = n * \sum\li ...

  3. BZOJ5093 [Lydsy1711月赛]图的价值 【第二类斯特林数 + NTT】

    题目链接 BZOJ5093 题解 点之间是没有区别的,所以我们可以计算出一个点的所有贡献,然后乘上\(n\) 一个点可能向剩余的\(n - 1\)个点连边,那么就有 \[ans = 2^{{n - 1 ...

  4. bzoj5093:图的价值(第二类斯特林数+NTT)

    传送门 首先,题目所求为\[n\times 2^{C_{n-1}^2}\sum_{i=0}^{n-1}C_{n-1}^ii^k\] 即对于每个点\(i\),枚举它的度数,然后计算方案.因为有\(n\) ...

  5. 【BZOJ4555】【TJOI2016】【HEOI2016】求和 (第二类斯特林数+NTT卷积)

    Description 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: $$f(n)=\sum_{i=0}^n\sum_{j=0}^i S(i,j)\tim ...

  6. P4091 [HEOI2016/TJOI2016]求和(第二类斯特林数+NTT)

    传送门 首先,因为在\(j>i\)的时候有\(S(i,j)=0\),所以原式可以写成\[Ans=\sum_{i=0}^n\sum_{j=0}^nS(i,j)\times 2^j\times j! ...

  7. BZOJ4555 [Tjoi2016&Heoi2016]求和 【第二类斯特林数 + NTT】

    题目 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) + ...

  8. bzoj 4555 [Tjoi2016&Heoi2016] 求和 —— 第二类斯特林数+NTT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 关于第二类斯特林数:https://www.cnblogs.com/Wuweizhen ...

  9. BZOJ 4555:[TJOI2016&HEOI2016]求和(第二类斯特林数+NTT)

    题目链接 \(Description\) 求 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)2^jj!\]对998244353取模后的结果. \(n<=10^5\) \(Sol ...

随机推荐

  1. Python-类的封装

    1:封装数据 将数据隐藏起来这不是目的.隐藏起来然后对外提供操作该数据的接口,然后我们可以在接口附加上对该数据操作的限制,以此完成对数据属性操作的严格控制. class Teacher: def __ ...

  2. Python入门-用户登录程序升级版

    编写登陆接口 基础需求: 让用户输入用户名密码 认证成功后显示欢迎信息 输错三次后退出程序 升级需求: 可以支持多个用户登录 (提示,通过列表存多个账户信息) 用户3次认证失败后,退出程序,再次启动程 ...

  3. Day2 Numerical simulation of optical wave propagation之标量衍射理论基本原理(二)

    2.麦克斯韦方程组的简单行波解 讨论通过线性.各向同性.均匀.无色散.无限电荷和电流的电介质材料的光波传输.在这种情况下,介质具有如下属性: (1)推导获得波动方程( 由麦克斯韦方程组导出的.描述电磁 ...

  4. ibatis实战之插入数据(自动生成主键)

    ibatis实战之插入数据(自动生成主键) --------- 如果你将数据库设计为使用自动生成的主键,就可以使用ibatis的<selectKey>元素(该元素是<insert&g ...

  5. swagger 指定字段不显示到文档里

    Swagger UI 隐藏指定接口类或方法 - 宁静致远 - CSDN博客https://blog.csdn.net/lqh4188/article/details/53538201 swagger ...

  6. [转帖]linux 清空history以及记录原理

    linux 清空history以及记录原理 自己的linux 里面总是一堆 乱七八槽输错的命令 用这个办法 可以清空 linux的内容. 清爽一些. 1.当前session执行的命令,放置缓存中,执行 ...

  7. 【学亮IT手记】MySql行列转换案例

    create table score( name ), math int, english int ); ,); ,); ,); ,); SHOW tables; SELECT * from scor ...

  8. Oracle循环

    --无条件循环 declare v_num ; begin loop dbms_output.put_line(v_num); v_num:; ; end loop; end; --有条件循环 dec ...

  9. Day 4-2 random模块

    import random random.randint(1,100) # 从1到100中随机取出一个数.包含100 random.randrange(1,100) #功能和上面一样.只是不包含100 ...

  10. Flutter 中 JSON 解析

    本文介绍一下Flutter中如何进行json数据的解析.在移动端开发中,请求服务端返回json数据并解析是一个很常见的使用场景.Android原生开发中,有GsonFormat这样的神器,一键生成Ja ...