【Luogu2664】树上游戏(点分治)

题面

洛谷

题解

很好的一道点分治题。

首先直接点分治,考虑过每个分治重心的链的贡献。

我们从分治重心开始找每种颜色,强制令一种颜色只在其到分治重心的链上第一次出现的位置统计贡献,假设子树大小是\(size\),那么对于当前分治重心的其他所有子树都会产生\(size\)的贡献。

那么考虑当前分治重心每个子树的每个点会得到的贡献,首先把这棵子树内的贡献删去,然后记录其他所有颜色的贡献和。如果当前颜色在这棵子树内第一次出现,那么其他所有子树都必定会产生贡献,那么把这部分贡献加上,继续递归就行了。

详细的看看代码吧。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define pb push_back
#define MAX 100100
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
vector<int> E[MAX];
int n,c[MAX];ll ans[MAX];
int mx,Size,rt,sz[MAX];
bool vis[MAX];
void Getroot(int u,int ff)
{
sz[u]=1;int ret=0;
for(int v:E[u])
{
if(v==ff||vis[v])continue;
Getroot(v,u);sz[u]+=sz[v];
ret=max(ret,sz[v]);
}
ret=max(ret,Size-sz[u]);
if(ret<mx)mx=ret,rt=u;
}
int cnt[MAX];ll num[MAX],sum;
void dfs(int u,int ff,int opt)
{
if(!cnt[c[u]]++)num[c[u]]+=opt*sz[u],sum+=opt*sz[u];
for(int v:E[u])if(v!=ff&&!vis[v])dfs(v,u,opt);
--cnt[c[u]];
}
void dfs(int u,int ff)
{
if(!cnt[c[u]]++)sum+=Size-num[c[u]];
ans[u]+=sum;
for(int v:E[u])if(v!=ff&&!vis[v])dfs(v,u);
if(!--cnt[c[u]])sum-=Size-num[c[u]];
}
void Divide(int u)
{
vis[u]=true;Getroot(u,0);
dfs(u,0,1);ans[u]+=sum;Size=sz[u];
for(int v:E[u])
{
if(vis[v])continue;
num[c[u]]-=sz[v];sum-=sz[v];Size-=sz[v];
cnt[c[u]]=1;dfs(v,u,-1);cnt[c[u]]=0;
dfs(v,u);
cnt[c[u]]=1;dfs(v,u,1);cnt[c[u]]=0;
num[c[u]]+=sz[v];sum+=sz[v];Size+=sz[v];
}
dfs(u,0,-1);
for(int v:E[u])
{
if(vis[v])continue;
mx=Size=sz[v];Getroot(v,u);
Divide(rt);
}
}
int main()
{
n=read();
for(int i=1;i<=n;++i)c[i]=read();
for(int i=1,u,v;i<n;++i)u=read(),v=read(),E[u].pb(v),E[v].pb(u);
mx=Size=n;Getroot(1,0);
Divide(rt);
for(int i=1;i<=n;++i)printf("%lld\n",ans[i]);
return 0;

【Luogu2664】树上游戏(点分治)的更多相关文章

  1. 洛谷P2664 树上游戏(点分治)

    题意 题目链接 Sol 神仙题..Orz yyb 考虑点分治,那么每次我们只需要统计以当前点为\(LCA\)的点对之间的贡献以及\(LCA\)到所有点的贡献. 一个很神仙的思路是,对于任意两个点对的路 ...

  2. 洛谷P2664 树上游戏——点分治

    原题链接 被点分治虐的心态爆炸了 题解 发现直接统计路径上的颜色数量很难,考虑转化一下统计方式.对于某一种颜色\(c\),它对一个点的贡献为从这个点出发且包含这种颜色的路径条数. 于是我们先点分一下, ...

  3. [Luogu2664]树上游戏

    题面戳我 sol 点分.我们面临的最主要一个问题,就是如何在\(O(n)\)的时间内算出所有LCA为根的点对的贡献,还要分别累加到它们自己的答案中去. \(num_i\):每一种颜色的数量.你可以认为 ...

  4. 【洛谷P2664】 树上游戏 点分治

    code: #include <bits/stdc++.h> #define N 200009 #define ll long long #define setIO(s) freopen( ...

  5. 洛谷 P2664 树上游戏 解题报告

    P2664 树上游戏 题目描述 \(\text{lrb}\)有一棵树,树的每个节点有个颜色.给一个长度为\(n\)的颜色序列,定义\(s(i,j)\) 为 \(i\) 到 \(j\) 的颜色数量.以及 ...

  6. P2664 树上游戏

    P2664 树上游戏 https://www.luogu.org/problemnew/show/P2664 分析: 点分治. 首先关于答案的统计转化成计算每个颜色的贡献. 1.计算从根出发的路径的答 ...

  7. Luogu P2664 树上游戏 dfs+树上统计

    题目: P2664 树上游戏 分析: 本来是练习点分治的时候看到了这道题.无意中发现题解中有一种方法可以O(N)解决这道题,就去膜拜了一下. 这个方法是,假如对于某一种颜色,将所有这种颜色的点全部删去 ...

  8. LG2664 树上游戏

    树上游戏 题目描述 lrb有一棵树,树的每个节点有个颜色.给一个长度为n的颜色序列,定义s(i,j) 为i 到j 的颜色数量.以及 $$sum_i=\sum_{j=1}^ns(i,j)$$ 现在他想让 ...

  9. poj1741 树上的点分治

    题意: 一棵10000个点的树,每条边的长不超过1000,给定一个值k,问距离不超过k的点对数有多少.(多组数据) 输入样例: 5 4 1 2 3 1 3 1 1 4 2 3 5 1 0 0输出样例: ...

随机推荐

  1. iOS开发 横向分页样式 可左右滑动或点击头部栏按钮进行页面切换

    iOS开发 横向分页样式 可左右滑动或点击头部栏按钮进行页面切换 不多说直接上效果图和代码 1.设置RootViewController为一个导航试图控制器 //  Copyright © 2016年 ...

  2. UITableView加载数据,没有数据,没有网络界面处理

    https://blog.csdn.net/chmod_r_755/article/details/53231461 俗话说的好,傻逼的APP都是相似的,牛逼的APP各有各的牛逼...但是UITabl ...

  3. ocrosoft 程序设计提高期末复习问题M 递归求猴子吃桃

    http://acm.ocrosoft.com/problem.php?cid=1172&pid=12 题目描述 猴子吃桃问题.猴子第1天摘下若干个桃子,当即吃了一半,还不过瘾,又多吃了一个. ...

  4. Navicat 或者Java的JDBC通过SSH Tunnel连接MySQL数据库

    JDBC通过SSH Tunnel连接MySQL数据库 - 明明 - CSDN博客https://blog.csdn.net/a351945755/article/details/21782693 Na ...

  5. sql之cursor的简介和字符串拆分(split)与游标的使用

     字符串拆分(split)与游标的使用 CREATE TABLE Plates ( ,), ) NOT NULL, [BusinessId] INT NOT NULL, ) ),),), SELECT ...

  6. .Net批量插入数据

    1. 一般我们普通数据插入是这样的: 现在我们写一个控制台程序用常规办法添加10000条数据. //以下是批量插入数据的办法 //连接字符串 string str = "Server=.;D ...

  7. jQuery-mobilevalidate使用 的一些心得,小小总结

    在做M站时比较纠结的是表单验证,不像pc端,移动端的验证要求插件更小更轻量,更加灵活,说不定是冒气泡的报错提示?! 介绍一款好用的移动端的表单验证插件:jQuery-mobilevalidate: 代 ...

  8. 解决Jupyter notebook[import tensorflow as tf]报错

    参考: https://blog.csdn.net/caicai_zju/article/details/70245099

  9. python之路--MRO和C3算法

    一 . MRO(method resolution order) 多继承的一种方法,一种查找的顺序 在python3 里面是一种新类式MRO 需要用都的是C3算法 class A: pass clas ...

  10. Java的hashCode和equals方法

    当然健壮的代码,两个都重写那是最好. 用不到hashCode的, 也没有必要重写hashCode. 个人感觉. 哈希机制的Java集合类,例如 Hashtable, HashMap, HashSet ...