Description

求\(~n~\)个点组成的有标号无向连通图的个数。\(~1 \leq n \leq 13 \times 10 ^ 4~\).

Solution

这道题的弱化版是poj1737, 其中\(n \leq 50\), 先来解决这个弱化版的题。考虑\(~dp~\),直接统计答案难以入手,于是考虑容斥。显然有,符合条件的方案数\(=\)所有方案数\(-\)不符合条件的方案数,而这个不符合条件的方案数就是图没有完全联通的情况。设\(~dp_i~\)表示\(~i~\)个点组成的合法方案数,考虑\(~1~\)号点的联通情况,易得

\[dp_i = 2 ^ {i \choose 2} - \sum_{j = 1}^{i - 1} {dp_j \times {{i - 1} \choose {j - 1}}} \times 2 ^ {{i - j} \choose 2}
\]

这是什么意思呢...枚举\(~1~\)号点所在的联通块大小\(~j~\), 可以知道这个联通块有\(~dp_j~\)种连法,除了这\(~j~\)个点,剩下的点可以随意连接,而这\(~j - 1~\)个点可以在\(~i - 1~\)个点中随意选择(因为强制选了\(~1~\)号点)。

那么这个简单版就已经解决了,时间复杂度\(~O(n ^ 2)~\), 而且要写高精度。博主很懒就不想写了。这个复杂度不是神威的话肯定是跑不过的。于是我们考虑优化,把上面的式子展开,可以得到

\[dp_i = 2 ^ {i \choose 2} - \sum_{j = 1}^{i - 1} dp_j \times \frac{(i - 1)!}{(j - 1)!(i - j)! } \times {2 ^ {i - j \choose 2}}
\]

同除\(~(i - 1) !~​\), 得

\[\frac{dp_i}{(i - 1)!} = \frac{2 ^ {i \choose 2}}{(i - 1)!} - \sum_{j = 1}^{i - 1} \frac {dp_j \times {2 ^ {i - j \choose 2}}} {(j - 1)!(i - j)!}
\]

观察一下,这个\(~ \frac{dp_i}{(i - 1)!} ~\)就是那个\(~\sum~\)式子的第\(~i~\)项, 移项得,

\[\sum_{j = 1}^{i} \frac {dp_j}{(j - 1)!} \times \frac{2 ^ {i - j \choose 2}}{(i - j)!} = \frac{2 ^ {i \choose 2}}{(i - 1)!}
\]

左边是很自然的一个卷积式子。令

\[h = \sum_{i = 1}^{n} \frac{dp_i}{(i - 1)!} \times x^i~~, ~~g = \sum_{i = 0}^{n} \frac{2 ^ {i \choose 2}}{i!}\times x^i~~, ~~f = \sum_{i = 1}^{n} \frac{2 ^ {i \choose 2}}{(i - 1)!}\times x^i~~
\]

所以有\(~f = h * g\), 但是我们要求的是\(~h_n~\),转换一下就是\(~h = g * f ^ {-1}\), 要用到多项式求逆

Code

#include<bits/stdc++.h>
#define For(i, j, k) for (int i = j; i <= k; ++i)
#define Forr(i, j, k) for (int i = j; i >= k; --i)
using namespace std; inline void File() {
freopen("bzoj3456.in", "r", stdin);
freopen("bzoj3456.out", "w", stdout);
} const int N = (1 << 20) + 10, mod = 1004535809;
int a[N], b[N], c[N], fac[N], inv[N], n;
int powg[N], invg[N], rev[N], siz, p[N], q[N]; inline int qpow(int a, int b) {
static int res;
for (res = 1; b; b >>= 1, a = 1ll * a * a % mod)
if (b & 1) res = 1ll * res * a % mod;
return res;
} inline void Init(int n) {
fac[0] = inv[0] = 1;
For(i, 1, n) fac[i] = 1ll * i * fac[i - 1] % mod; inv[n] = qpow(fac[n], mod - 2);
Forr(i, n - 1, 0) inv[i] = 1ll * (i + 1) * inv[i + 1] % mod;
} inline int add(int x, int y) { return (x += y) >= mod ? x - mod : x; } inline void Init_pow(int n) {
int g = qpow(3, mod - 2);
for (int i = 1; i <= n; i <<= 1) {
powg[i] = qpow(3, (mod - 1) / i);
invg[i] = qpow(g, (mod - 1) / i);
}
} inline void Init_rev(int n) {
int bit = 0; for (siz = 1; siz <= n; siz <<= 1) ++ bit;
For(i, 0, siz - 1) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
} inline void NTT(int *a, int flag) {
For(i, 0, siz - 1) if (rev[i] > i) swap(a[rev[i]], a[i]); for (int i = 2; i <= siz; i <<= 1) {
int wn = flag > 0 ? powg[i] : invg[i]; for (int j = 0; j < siz; j += i) {
int w = 1;
for (int k = 0; k < i >> 1; w = 1ll * w * wn % mod, ++ k) {
int x = a[j + k], y = 1ll * w * a[j + k + (i >> 1)] % mod;
a[k + j] = add(x, y), a[k + j + (i >> 1)] = add(x, mod - y);
}
}
} if (flag == -1) {
int g = qpow(siz, mod - 2);
For(i, 0, siz - 1) a[i] = 1ll * a[i] * g % mod;
}
} inline void Inv(int *a, int *b, int len) { // b is the inv of a
if (len == 1) return (void) (b[0] = qpow(a[0], mod - 2)); Inv(a, b, len >> 1), Init_rev(len);
For(i, 0, len - 1) p[i] = a[i], q[i] = b[i]; NTT(p, 1), NTT(q, 1);
For(i, 0, siz - 1) p[i] = 1ll * q[i] * q[i] % mod * p[i] % mod;
NTT(p, -1); For(i, 0, len - 1) b[i] = add(2 * b[i] % mod, mod - p[i]);
} int main() {
File();
Init(N - 5), Init_pow(1 << 20); scanf("%d", &n);
For(i, 0, n) b[i] = 1ll * inv[i] * qpow(2, 1ll * (i - 1) * i / 2 % (mod - 1)) % mod;
For(i, 1, n) c[i] = 1ll * inv[i - 1] * qpow(2, 1ll * (i - 1) * i / 2 % (mod - 1)) % mod; Init_rev(n); Inv(b, a, siz); NTT(a, 1), NTT(c, 1);
For(i, 0, siz - 1) a[i] = 1ll * a[i] * c[i] % mod;
NTT(a, -1); int ans = 1ll * a[n] * fac[n - 1] % mod;
printf("%d", ans);
return 0;
}

【bzoj3456】城市规划(多项式求逆+dp)的更多相关文章

  1. BZOJ 3456: 城市规划 与 多项式求逆算法介绍(多项式求逆, dp)

    题面 求有 \(n\) 个点的无向有标号连通图个数 . \((1 \le n \le 1.3 * 10^5)\) 题解 首先考虑 dp ... 直接算可行的方案数 , 容易算重复 . 我们用总方案数减 ...

  2. BZOJ 3456: 城市规划 多项式求逆

    Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了.  刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接 ...

  3. 【BZOJ3456】城市规划 多项式求逆

    [BZOJ3456]城市规划 Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得 ...

  4. BZOJ 3456: 城市规划 [多项式求逆元 DP]

    题意: 求出n个点的简单(无重边无自环)无向连通图数目.方案数mod 1004535809(479 * 2 ^ 21 + 1)即可. n<=130000 DP求方案 g(n) n个点所有图的方案 ...

  5. bzoj 3456 城市规划 多项式求逆+分治FFT

    城市规划 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1091  Solved: 629[Submit][Status][Discuss] Desc ...

  6. bzoj3456 城市规划 多项式求In

    \(n\)个点的无向联通图的个数 打着好累啊 一定要封装一个板子 记\(C(x)\)为无向图个数的指数型生成函数,\(C(0) = 1\) 记\(G(x)\)为无向联通图个数的指数型生成函数,\(G( ...

  7. [BZOJ3456]城市规划:DP+NTT+多项式求逆

    写在前面的话 昨天听吕老板讲课,数数题感觉十分的神仙. 于是,ErkkiErkko这个小蒟蒻也要去学数数题了. 分析 Miskcoo orz 带标号无向连通图计数. \(f(x)\)表示\(x\)个点 ...

  8. 【BZOJ3456】轩辕朗的城市规划 无向连通图计数 CDQ分治 FFT 多项式求逆 多项式ln

    题解 分治FFT 设\(f_i\)为\(i\)个点组成的无向图个数,\(g_i\)为\(i\)个点组成的无向连通图个数 经过简单的推导(枚举\(1\)所在的连通块大小),有: \[ f_i=2^{\f ...

  9. BZOJ3456 城市规划 【多项式求逆】

    题目链接 BZOJ3456 题解 之前我们用分治\(ntt\)在\(O(nlog^2n)\)的复杂度下做了这题,今天我们使用多项式求逆 设\(f_n\)表示\(n\)个点带标号无向连通图数 设\(g_ ...

随机推荐

  1. 黑客帝国效果赏析(包含ES6的语法)

    首先,看看效果吧. 代码如下: <!DOCTYPE html> <html lang="en"> <head> <meta charset ...

  2. vue echarts 动态数据

    安装echarts依赖 npm install echarts -S 或者使用国内的淘宝镜像: 安装 npm install -g cnpm --registry=https://registry.n ...

  3. 软件工程(FZU2015) 赛季得分榜,第三回合

    SE_FZU目录:1 2 3 4 5 6 7 8 9 10 11 12 13 积分规则 积分制: 作业为10分制,练习为3分制:alpha30分: 团队项目分=团队得分+个人贡献分 个人贡献分: 个人 ...

  4. apply和call方法

    真伪数组转换 /* apply和call方法的作用: 专门用于修改方法内部的this 格式: call(对象, 参数1, 参数2, ...); apply(对象, [数组]); */ function ...

  5. python基础之数据类型和数值类型

    python3的六大数据类型: 1.tuple元组 2.number数字 3.string字符串 4.set集合 5.list列表 6.dictionary字典 其中不可变数据3个:tuple.num ...

  6. JS—ajax及async和defer的区别

    ###1.ajax  “Asynchronous Javascript And XML”(异步 JavaScript 和 XML) 使用: 如不考虑旧版本浏览器兼容性, // 第一步创建xhr对象 v ...

  7. Laravel5 创建自定义门面(Facade)

    门面为应用服务容器中的绑定类提供了一个“静态”接口.Laravel 内置了很多门面,你可能在不知道的情况下正在使用它们.Laravel 的门面作为服务容器中底层类的“静态代理”,相比于传统静态方法,在 ...

  8. oracle建表流程

    --创建表空间test1 create tablespace test1 datafile 'd:\test1.dbf' size 100m autoextend on next 10m --创建用户 ...

  9. idea打包springboot+maven项目并发布在linux上

    2018年11月13日我亲测有效的,很简单的,借鉴博客:https://blog.csdn.net/smilecall/article/details/56288972 第一步:随便建一个maven类 ...

  10. Sublime Text3 配置 NodeJs 开发环境

    题外话:使用visual studio开发NodeJs也是很方便,只需要安装插件即可. 本着对Sublime Text3的喜爱,尤其是最近更新后,界面和功能上感觉更nice了,那就配置一发环境吧! ( ...