1.算术运算符

它们只用于位置相同的元素之间,即为元素级的运算。
所得到的运算结果组成一个新的数组。
不用编写循环即可对数据执行批量运算。(矢量化)

import numpy as np

# 创建一个数组
a = np.arange(4)
print('数组a ', a) # 加上一个标量
print('加标量', a + 4) # 乘以一个标量
print('乘标量', a * 2)
数组a  [0 1 2 3]
加标量 [4 5 6 7]
乘标量 [0 2 4 6]
b = np.arange(4, 8)
print('数组b ', b) print('a + b ', a + b)
print('a - b ', a - b)
print('a * b ', a * b)
数组b  [4 5 6 7]
a + b [ 4 6 8 10]
a - b [-4 -4 -4 -4]
a * b [ 0 5 12 21]

这些运算符还使用于返回值为NumPy数组的函数。

# 数组a乘以数组b的正弦值
print(a * np.sin(b)) print('-------------------------------------------------') # 数组a乘以数组b的平方根
print(a * np.sqrt(b))
[-0.         -0.95892427 -0.558831    1.9709598 ]
-------------------------------------------------
[0. 2.23606798 4.89897949 7.93725393]

对于多维数组,这些运算符仍然是元素级的。

A = np.arange(0, 9).reshape(3,3)
print('数组A:')
print(A) B = np.ones((3, 3))
B[1][1] = 2.5
print('数组B:')
print(B) print('A*B:')
print(A*B)
数组A:
[[0 1 2]
[3 4 5]
[6 7 8]]
数组B:
[[1. 1. 1. ]
[1. 2.5 1. ]
[1. 1. 1. ]]
A*B:
[[ 0. 1. 2.]
[ 3. 10. 5.]
[ 6. 7. 8.]]

2.矩阵积(mastrix produet)

NumPy用dot()函数表示这类乘法,该运算不是元素级的。
所得到的数组中每个元素为,第一个矩阵中与该元素行号相同的元素与第二个矩阵中与该元素列号相同的元素,两两相乘后再求和
设A为m x n的矩阵,B为p x n的矩阵,则dot(A,B)为m x n的矩阵。
假设dot(A, B)得到数组C,则C中的第1行第1列的元素为 3 x 1.0 + 4 x 2.5 + 5 x 1.0 = 18.0
矩阵计算不遵循交换律。即dot(A,B)不等于dot(B,A)

C = np.dot(A, B)
# 另一种写法 C = A.dot(B)
print('dot(A,B)结果:')
print(C) C1 = np.dot(B,A)
print('dot(B,A)结果:')
print(C1)
dot(A,B)结果:
[[ 3. 4.5 3. ]
[12. 18. 12. ]
[21. 31.5 21. ]]
dot(B,A)结果:
[[ 9. 12. 15. ]
[13.5 18. 22.5]
[ 9. 12. 15. ]]

3.自增和自减运算符

运算结果不是赋给一个新数组。
当想修改数组的值而不想生成新数组时可以使用它们。

a = np.arange(4)
print('原数组', a) a += 1
print('自加1 ', a) a -= 3
print('自减3 ', a)
原数组 [0 1 2 3]
自加1 [1 2 3 4]
自减3 [-2 -1 0 1]

4.通用函数(ufunc = universal function)

它对数组中的各个元素逐一进行操作。
通用函数分别处理输入数组的每个元素,生成的结果组成一个新的输出数组。
三角函数等很多数学运算符符合通用函数的定义。

a = np.array([0, 1, 2, 3, 4])
print(np.sqrt(a)) # 计算平方根
[0.         1.         1.41421356 1.73205081 2.        ]

5.聚合函数

聚合函数是指对一组值(如数组)进行操作,返回一个单一值作为结果的函数。

a = np.array([3.3, 4.5, 1.2, 5.7, 0.3])
print('总和: ', a.sum())
print('最小值:', a.min())
print('最大值:', a.max())
print('平均值:', a.mean())
print('标准差:', a.std())
总和:   15.0
最小值: 0.3
最大值: 5.7
平均值: 3.0
标准差: 2.0079840636817816

NumPy学习_02 ndarray基本操作的更多相关文章

  1. NumPy学习_00 ndarray的创建

    1.使用array()函数创建数组 参数可以为:单层或嵌套列表:嵌套元组或元组列表:元组或列表组成的列表 # 导入numpy库 import numpy as np # 由单层列表创建 a = np. ...

  2. NumPy学习_01 ndarray相关概念

    1.NumPy库 NumPy = Numerical Python 是高性能科学计算和数据分析的基础库. pandas库充分借鉴了NumPy的相关概念,先行掌握NumPy库的用法,才能把pandas的 ...

  3. Python数据分析:Numpy学习笔记

    Numpy学习笔记 ndarray多维数组 创建 import numpy as np np.array([1,2,3,4]) np.array([1,2,3,4,],[5,6,7,8]) np.ze ...

  4. 数据分析之Pandas和Numpy学习笔记(持续更新)<1>

    pandas and numpy notebook        最近工作交接,整理电脑资料时看到了之前的基于Jupyter学习数据分析相关模块学习笔记.想着拿出来分享一下,可是Jupyter导出来h ...

  5. 【大数据技术能力提升_2】numpy学习

    numpy学习 标签(空格分隔): numpy python 数据类型 5种类型:布尔值(bool),整数(int),无符号整数(uint).浮点(float).复数(complex) 支持的原始类型 ...

  6. Python NumPy学习总结

    一.NumPy简介 其官网是:http://www.numpy.org/ NumPy是Python语言的一个扩充程序库.支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.Num ...

  7. NumPy学习(让数据处理变简单)

    NumPy学习(一) NumPy数组创建 NumPy数组属性 NumPy数学算术与算数运算 NumPy数组创建 NumPy 中定义的最重要的对象是称为 ndarray 的 N 维数组类型. 它描述相同 ...

  8. numpy 学习笔记

    numpy 学习笔记 导入 numpy 包 import numpy as np 声明 ndarray 的几种方法 方法一,从list中创建 l = [[1,2,3], [4,5,6], [7,8,9 ...

  9. numpy 学习总结

    numpy 学习总结 作者:csj更新时间:01.09 email:59888745@qq.com 说明:因内容较多,会不断更新 xxx学习总结: 回主目录:2017 年学习记录和总结 #生成数组/使 ...

随机推荐

  1. C++内存泄漏检测工具

    C++内存泄漏检测工具 1.VC自带的CRT:_CrtCheckMemory   调试器和 CRT 调试堆函数 1.1用法: /************************************ ...

  2. Angular 引入第三方框架方法(如Jquery,Bootstrap)

    1.npm i jquery --save    /    npm i bootstrap --save 2.angular.json 引入路径 3.引入Jquery和Bootstrap的类型描述文件 ...

  3. Intellij IDEA快捷键大全汇总(2019更新)

    Intellij IDEA快捷键大全汇总(2019) Ctrl+Shift + Enter,语句完成“!”,否定完成,输入表达式时按 “!”键 Alt+回车 导入包,自动修正 Ctrl+N   查找类 ...

  4. Exp4 恶意代码分析 20164313 杜桂鑫

    1.实践目标 1.1是监控你自己系统的运行状态,看有没有可疑的程序在运行. 1.2是分析一个恶意软件,就分析Exp2或Exp3中生成后门软件:分析工具尽量使用原生指令或sysinternals,sys ...

  5. Spark启动报错|java.io.FileNotFoundException: File does not exist: hdfs://hadoop101:9000/directory

    at org.apache.spark.deploy.history.FsHistoryProvider.<init>(FsHistoryProvider.scala:) at org.a ...

  6. Anatomy of a Database System学习笔记 - 事务:并发控制与恢复

    这一章看起来是讲存储引擎的.作者抱怨数据库被黑为“monolithic”.不可拆分为可复用的组件:但是实际上除了事务存储引擎管理模块,其他模块入解析器.重写引擎.优化器.执行器.访问方式都是代码相对独 ...

  7. reg 和wire 区别

    reg相当于存储单元,wire相当于物理连线 Verilog 中变量的物理数据分为线型和寄存器型.这两种类型的变量在定义时要设置位宽,缺省为1位.变量的每一位可以是0,1,X,Z.其中x代表一个未被预 ...

  8. html5 Sortable.js 拖拽排序源码分析

    最近公司项目经常用到一个拖拽 Sortable.js插件,所以有空的时候看了 Sortable.js 源码,总共1300多行这样,写的挺完美的.   本帖属于原创,转载请出名出处. 官网http:// ...

  9. mkdir npm

    mkdir -p 创建目录 没有就创建 有就用 npm init -y 不提示创建package.json 文件

  10. yum管理工具

    yum:也是一个rpm包的管理工具,可以实现自动解决rpm包的依赖关系(自动安装依赖顺序进行rpm包的安装) 为何rpm包会有依赖关系? 制作rpm的人,在制作rpm包的时候,就将这个rpm的所依赖的 ...