题目描述

N个石子,A和B轮流取,A先。每个人每次最少取一个,最多不超过上一个人的个数的2倍。
取到最后一个石子的人胜出,如果A要有必胜策略,第一次他至少要取多少个。

输入

第一行给出数字N,N<=10^15.第二行N个数字

输出

如题

样例输入

4

样例输出

1
 
根据齐肯多夫定理,任何一个正整数都能由若干个不连续的斐波那契数表示。
那么这个博弈就可以分成若干个斐波那契博弈(斐波那契博弈详见博弈论讲解)。
A只要第一次取走n被表示的最小斐波那契数,那么B就变成了先手、A变成了后手。
这时B无法取到下一个最小的斐波那契数(因为表示这个数的斐波那契数不连续且后手不能取超过先手的二倍)。
所以对于剩下的每个斐波那契数都是B先取且最后一个一定被A取到。

#include<set>
#include<map>
#include<queue>
#include<cmath>
#include<stack>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
ll f[100];
int cnt;
ll n;
int main()
{
scanf("%lld",&n);
f[1]=1;
f[0]=1;
cnt=2;
while(1)
{
f[cnt]=f[cnt-1]+f[cnt-2];
if(f[cnt]>=n)
{
break;
}
cnt++;
}
for(int i=cnt;i>=1;i--)
{
if(n==f[i])
{
printf("%lld",n);
return 0;
}
if(n>f[i])
{
n-=f[i];
}
}
}

BZOJ2275[Coci2010]HRPA——斐波那契博弈的更多相关文章

  1. {HDU}{2516}{取石子游戏}{斐波那契博弈}

    题意:给定一堆石子,每个人最多取前一个人取石子数的2被,最少取一个,最后取石子的为赢家,求赢家. 思路:斐波那契博弈,这个题的证明过程太精彩了! 一个重要的定理:任何正整数都可以表示为若干个不连续的斐 ...

  2. HDU 2516 取石子游戏(斐波那契博弈)

    取石子游戏 Time Limit: 2000/1000 MS(Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissi ...

  3. HDU 2516 取石子游戏 斐波纳契博弈

    斐波纳契博弈: 有一堆个数为n的石子,游戏双方轮流取石子,满足: 1)先手不能在第一次把所有的石子取完: 2)之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍) ...

  4. hdu 2516 取石子游戏 (斐波那契博弈)

    题意:1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍. 取完者胜,先取者负输出"Second win",先取者胜 ...

  5. 简单易懂的博弈论讲解(巴什博弈、尼姆博弈、威佐夫博弈、斐波那契博弈、SG定理)

    博弈论入门: 巴什博弈: 两个顶尖聪明的人在玩游戏,有一堆$n$个石子,每次每个人能取$[1,m]$个石子,不能拿的人输,请问先手与后手谁必败? 我们分类讨论一下这个问题: 当$n\le m$时,这时 ...

  6. 博弈论基础知识: 巴什博奕+斐波那契博弈+威佐夫博奕+尼姆博弈(及Staircase)(转)

    (一)巴什博奕(Bash Game):只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个.最后取光者得胜.若(m+1) | n,则先手必败,否则先手必胜.显然,如果n=m+1 ...

  7. 51Nod 1070:Bash游戏 V4(斐波那契博弈)

    1070 Bash游戏 V4  基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 有一堆石子共有N个.A B两个人轮流拿,A先拿.每次拿的数量最少1个 ...

  8. HDU.2516 取石子游戏 (博弈论 斐波那契博弈)

    HDU.2516 取石子游戏 (博弈论 斐波那契博弈) 题意分析 简单的斐波那契博弈 博弈论快速入门 代码总览 #include <bits/stdc++.h> #define nmax ...

  9. 51Nod 1070 Bash游戏 V4(斐波那契博弈)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1070 题意: 思路: 这个是斐波那契博弈,http://blog.csd ...

随机推荐

  1. golang中的context包

    标准库的context包 从设计角度上来讲, golang的context包提供了一种父routine对子routine的管理功能. 我的这种理解虽然和网上各种文章中讲的不太一样, 但我认为基本上还是 ...

  2. 我的2017&2018

    最近项目进入验收阶段,所以上班没那么忙碌了,但是怎么说呢,我可能天生是闲不住的主,觉得浑身不自在(我这样的人是不是特别不会享福),此处应该有个笑脸哈. 翻看了博客园好几个大牛写的技术文章,感慨大牛不愧 ...

  3. 插入排序专题 直接插入 折半 希尔shell

    1.直接插入排序 分析:a[n]有n个元素 a[0...n-1]  从 i=1...n-1  a[i]依次与   a[0...n-2]数字进行比较 发现后面的数字大于前面的数字交换位置,每一次比较,与 ...

  4. springmvc的@ResponseBody报错

    错误:差不多就是下面的格式 原因:你可能返回的类型是这样的List<School>而school类中可能包含Class类或者Teacher类,就是包含对象. 这样的话jackson是不能帮 ...

  5. Python-类的封装

    1:封装数据 将数据隐藏起来这不是目的.隐藏起来然后对外提供操作该数据的接口,然后我们可以在接口附加上对该数据操作的限制,以此完成对数据属性操作的严格控制. class Teacher: def __ ...

  6. 多线程系列之五:Balking 模式

    一,什么是Balking模式 如果现在不合适执行这个操作,或者没必要执行这个操作,就停止处理,直接返回.在Balking模式中,如果守护条件不成立,就立即中断处理. 二,例子: 定期将当前数据内容写入 ...

  7. 学习docker——命令总结

    安装docker的方法可以参考:Ubuntu.CentOS.Windows.MacOS 查看版本信息 → ~ $ docker --version Docker version 18.03.1-ce, ...

  8. 【学习总结】Git学习-参考廖雪峰老师教程七-标签管理

    学习总结之Git学习-总 目录: 一.Git简介 二.安装Git 三.创建版本库 四.时光机穿梭 五.远程仓库 六.分支管理 七.标签管理 八.使用GitHub 九.使用码云 十.自定义Git 期末总 ...

  9. Linux watchdog

    使用 watchdog 构建高可用性的 Linux 系统及应用https://www.ibm.com/developerworks/cn/linux/l-cn-watchdog/index.html ...

  10. oracle服务端安装与配置

    从oracle官网下载oracle服务端的安装包. 下载下来是两个压缩文件,两个压缩文件都解压(缺一不可)到同一目录下,最后会得到一个database文件夹. 双击database文件夹下的setup ...