[SDOi2012]吊灯
嘟嘟嘟
这题想了半天,搞出了一个\(O(10 * d * n)\)(\(d\)为\(n\)的约数个数)的贪心算法,就是能在子树内匹配就在子树内匹配,否则把没匹配的都交给父亲,看父亲能否匹配。交上去开了O2才得了60分。按讨论中的方法卡常后还是A不了,就放弃了。
正解需要推一个结论,就是一棵树能被分成\(x\)个大小相同的联通块,必须满足至少有\(\frac{n}{x}\)个子树的大小为\(x\)的倍数。
证明啥的yy一下就好啦……
想到这个结论后,我还是没想出复杂度更优的算法……最后看题解才知道,你开个桶记录子树大小,每次枚举倍数就能把\(n\)降成\(\sqrt{n}\)了……
啊忘说了,讨论中的卡常就是根据题中树的构造方法,把dfs改成逆序扫一遍,减小常数。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 1.2e6 + 5;
const int NUM = 19940105;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
int n, fa[maxn];
struct Edge
{
int nxt, to;
}e[maxn];
int head[maxn], ecnt = -1;
In void addEdge(int x, int y)
{
e[++ecnt] = (Edge){head[x], y};
head[x] = ecnt;
}
int num[maxn], cnt = 0;
In void init(int n)
{
for(int i = 1; i * i <= n; ++i)
if(n % i == 0)
{
num[++cnt] = i;
if(i * i < n) num[++cnt] = n / i;
}
sort(num + 1, num + cnt + 1);
}
int ans;
int dp[maxn];
In bool dfs(int now, int _f) //我的O(n)贪心
{
for(int i = 1; i <= n; ++i) dp[i] = 1;
for(int i = n; i; --i)
{
if(dp[i] > ans) return 0;
if(dp[i] == ans) dp[i] = 0;
dp[fa[i]] += dp[i];
}
return 1;
}
int siz[maxn], tot[maxn];
In bool judge(int x)
{
int ret = 0;
for(int i = x; i <= n; i += x) ret += tot[i];
return ret >= n / x;
}
In void solve()
{
fill(siz + 1, siz + n + 1, 1);
fill(tot + 1, tot + n + 1, 0);
for(int i = n; i; --i)
{
siz[fa[i]] += siz[i];
++tot[siz[i]];
}
for(int i = 1; i <= cnt; ++i)
{
ans = num[i];
if(judge(num[i])) write(ans), enter;
}
}
int main()
{
n = read(); init(n);
for(int i = 2; i <= n; ++i) fa[i] = read();
puts("Case #1:");
solve();
for(int t = 1; t <= 9; ++t)
{
printf("Case #%d:\n", t + 1);
for(int i = 2; i <= n; ++i) fa[i] = (fa[i] + NUM) % (i - 1) + 1;
solve();
}
return 0;
}
[SDOi2012]吊灯的更多相关文章
- P2351 [SDOi2012]吊灯
P2351 [SDOi2012]吊灯 https://www.luogu.org/problemnew/show/P2351 题意: 一棵树,能否全部分成大小为x的联通块. 分析: 显然x是n ...
- [bzoj3004] [SDOi2012]吊灯
Description Alice家里有一盏很大的吊灯.所谓吊灯,就是由很多个灯泡组成.只有一个灯泡是挂在天花板上的,剩下的灯泡都是挂在其他的灯泡上的.也就是说,整个吊灯实际上类似于[b]一棵树[/b ...
- 洛谷P2351 [SDOi2012]吊灯 【数学】
题目 Alice家里有一盏很大的吊灯.所谓吊灯,就是由很多个灯泡组成.只有一个灯泡是挂在天花板上的,剩下的灯泡都是挂在其他的灯泡上的.也就是说,整个吊灯实际上类似于[b]一棵树[/b].其中编号为 1 ...
- BZOJ.3004.[SDOI2012]吊灯(结论)
题目链接 BZOJ 洛谷 题意: 将树划分为k个连通块,要求每个连通块大小相同.输出可能的大小. 结论: 满足条件时颜色的连通块数为k,当且仅当有 \(n/k\) 个节点满足它的子树是k的倍数(显然还 ...
- [bzoj3004][SDOI2012]吊灯——樹形DP
Brief Description 給定一棵樹, 判斷是否可以將其分成\(\frac{n}{k}\)個聯通塊, 其中每個聯通塊的大小均爲k. Algorithm Design 我們有一個結論: k可行 ...
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2554 Solved: 1566[Submit][ ...
- Bzoj3004 吊灯
Time Limit: 10 Sec Memory Limit: 128 MB Submit: 72 Solved: 46 Description Alice家里有一盏很大的吊灯.所 ...
- 【BZOJ】【3004】吊灯
思路题 要将整棵树分成大小相等的连通块,那么首先我们可以肯定的是每块大小x一定是n的约数,且恰好分成$\frac{n}{x}$块,所以我有了这样一个思路:向下深搜,如果一个节点的size=x,就把这个 ...
随机推荐
- WPF Modern UI 主题更换原理
WPF Modern UI 主题更换原理 一 . 如何更换主题? 二 . 代码分析 代码路径 : FirstFloor.ModernUI.App / Content / SettingsAppeara ...
- C# AESCBC256 与 java AESCBC256 加解密
和某上市公司对接接口,他们试用 java AES CBC PKCS5 256 加解密.网上C# 基本不合适. 注意:C# PKCS7 对应 java PKCS5 /// <summary> ...
- RBAC 几种常见的控制权限模型
1. 几种常见的权限模型 2. ACL 和 RBAC 对比 3. RBAC 权限模型的优势 (1)简化了用户和权限的关系 (2).易于扩展 易于维护 4.优势(给权限和收回权限) 5.架构
- nodejs+expressjs+ws实现了websocket即时通讯,服务器和客户端互相通信
nodejs代码 // 导入WebSocket模块: const WebSocket = require('ws'); // 引用Server类: const WebSocketServer = We ...
- 6个小而美的es6新特性
译者:动静若参商 译文:http://www.zcfy.cc/article/1795 原文:https://davidwalsh.name/es6-features JavaScript社区中的每个 ...
- CSS/CSS3中的原生变量var详解以及布局响应式网页扩展
使用语法 首先我们先来看一个例子:html代码: <div class="element">这是一段文字</div> css代码: .element { w ...
- springboot 集成 mybatis
1,添加依赖 <!-- mybatis --> <dependency> <groupId>org.mybatis.spring.boot</groupId& ...
- JMeter 正则表达式提取器结合ForEach控制器遍历提取变量值
正则表达式提取器结合ForEach控制器遍历提取变量值 by:授客 QQ:1033553122 1. 需要解决的问题 使用正则提取器提取了一组变量值,需要在其它sampler中,循环引用组中的某几 ...
- Bitmap压缩图片
代码实现: public class MainActivity extends AppCompatActivity { private ImageView img; @Override prot ...
- power designer的安装
PowerDesigner的安装 原由:新学期要开概要设计(软件设计与体系结构)这门课,老师推荐了两个CASE工具. Rational Rose Power Designer 本来想找rose的资源, ...