【C/C++】实现龙贝格算法
1. 复化梯形法公式以及递推化
复化梯形法是一种有效改善求积公式精度的方法。将[a,b]区间n等分,步长h = (b-a)/n,分点xk = a + kh。复化求积公式就是将这n等分的每一个小区间进行常规的梯形法求积,再将这n的小区间累加求和。 公式如下:

使用复化梯形法积分时,可以将此过程递推化,以更方便的使用计算机实现。设积分区间[a,b],将此区间n等分,则等分点共有n+1个,使用复化梯形积分求得Tn。进行二分,二分结果记为T2n,则有:

2. 龙贝格积分公式
龙贝格积分实际上是提高收敛速度的一种算法。由于复化梯形法步长减半后误差减少至 ,即有:

整理得:

根据此思路,将收敛缓慢的梯形值序列Tn加工成收敛迅速的龙贝格值序列Rn,这就是龙贝格算法,加工算法流程如下:

实现:
#include<stdio.h>
#include<math.h>
#include<iostream>
#include<cstdio>
using namespace std;
int Rk=;
int Tk=;
double fx(double x) //被积函数
{
//if(x==0.0)return 1.0;
return *x*x*x+*x*x+ + sin(x);
}
double getReal(double a,double b){
double r1 = 3.0/4.0 * b*b*b*b + 2.0/3.0*b*b*b + b - cos(b);
double r2 = 3.0/4.0 * a*a*a*a + 2.0/3.0*a*a*a + a - cos(a);
return r1 - r2;
}
double getS(double a,double b,double h)
{
double res=0.0;
for(double i=a+h/2.0; i<b; i+=h){
res+=fx(i);
} return res;
}
double Romberg(double a,double b,double e)
{
int k=;
double T1,T2,S1,S2,C1,C2,R1,R2;
double h=b-a;
double s;
T1=(fx(a)+fx(b))*h/2.0;
int counter=;
while()
{
Rk++;
counter++;
s=getS(a,b,h);
T2=(T1+h*s)/2.0;
S2=(4.0*T2-T1)/3.0;
h/=2.0;
T1=T2;
S1=S2;
C1=C2;
R1=R2;
if(k==)
{
k++;
continue;
}
C2=(16.0*S2-S1)/15.0;
if(k==)
{
k++;
continue;
}
R2=(64.0*C2-C1)/63.0;
if(k==)
{
k++;
continue;
}
if(fabs(R1-R2)<e||counter>=)break;
}
return R2;
}
double Tn(double a,double b,double e)
{
double T1,T2;
double h=b-a;
T1=(fx(a)+fx(b))*h/2.0;
while()
{
Tk++;
double s=getS(a,b,h);
T2=(T1+h*s)/2.0;
if(fabs(T2-T1)<e)break;
h/=2.0;
T1=T2;
}
return T2;
}
int main()
{
double a,b,e;
printf("输入积分限和精度: a b e:");
//输入区间[a,b],和精度e
scanf("%lf%lf%lf",&a,&b,&e);
double t=Romberg(a,b,e);
//分别输出龙贝格算法和梯形法的计算结果和相应二分次数
printf("\nRomberg:积分值:%.7lf -- 二分次数:%d\n",t,Rk);
t=Tn(a,b,e);
printf(" Tn:积分值:%.7lf -- 二分次数:%d\n",t,Tk);
double tf = getReal(a,b);
printf(" Real:%.7lf",tf);
return ;
}
【C/C++】实现龙贝格算法的更多相关文章
- 龙贝格算法 MATLAB实现
龙贝格算法主要是不断递推和加速,直到满足精度要求 递推: 加速: 得到T表: MATLAB代码: function I = Romberg(f, a, b, epsilon) I = 0; h = b ...
- C# “贝格尔”编排法
采用“贝格尔”编排法,编排时如果参赛队为双数时,把参赛队数分一半(参赛队为单数时,最后以“0”表示形成双数),前一半由1号开始,自上而下写在左边:后一半的数自下而上写在右边,然后用横线把相对的号数连接 ...
- 计算方法(二)用C#实现数值积分
在工程中,经常会遇到积分问题,这时原函数往往都是找不到的,因此就需要用计算方法的数值积分来求. public class Integral { /// <summary> /// 梯形公式 ...
- 龙贝格积分(c++)
用龙贝格算法计算积分 #include <iostream> #include<cmath> #include <iomanip> using namespace ...
- 10个重要的算法C语言实现源代码
包括拉格朗日,牛顿插值,高斯,龙贝格,牛顿迭代,牛顿-科特斯,雅克比,秦九昭,幂法,高斯塞德尔 .都是经典的数学算法,希望能开托您的思路.转自kunli.info 1.拉格朗日插值多项式 ,用于离散数 ...
- MATLAB数值积分法
MATLAB数值积分法 作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 一.实验目的 许多工程技术和数学研究中要用到定积分,如果无法直接算不出精确值(如含 ...
- zoj 2369 Two Cylinders
zoj 2369 Two Cylinders 链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2369 题意:已知两个无 ...
- 数值计算方法 | C语言实现几个数值计算方法(实验报告版)
目录 写在前面 实验一 牛顿插值方法的实现 实验二 龙贝格求积算法的实现 实验三 高斯列主元消去法的实现 实验四 最小二乘方法的实现 写在前面 使用教材:<数值计算方法>黄云清等编著 科学 ...
- 算法 PK 猫咪 | 章鱼保罗后继竟然是只猫?
简评:一只名叫阿喀琉斯(Achilles)的白猫一边小声叫着,一边慵懒地在分别插有俄罗斯和沙特阿拉伯国旗的食盆间踱步.这只看起来并不出众的小猫住在俄罗斯圣彼得堡埃尔米塔日博物馆(State Hermi ...
随机推荐
- Spring Boot 之日志记录
Spring Boot 之日志记录 Spring Boot 支持集成 Java 世界主流的日志库. 如果对于 Java 日志库不熟悉,可以参考:细说 Java 主流日志工具库 关键词: log4j, ...
- 从一个例子入门Mysql储存过程
例子 -- 秒杀执行存储过程 DELIMITER $$ -- 将分隔符; 转换为 $$ -- 定义存储过程 -- 参数: in 输入参数; out 输出参数 -- row_count():返回上一条修 ...
- 企业IT架构转型之道,阿里巴巴中台战略思想与架构实战
前言: 晚上11点多闲来无事,打开QQ技术群,发现有关 '中心化与引擎化' 的话题,本着学习的心态向大佬咨询,大佬推荐一本书,我大概看了有四分之一的样子,对于我这种对架构迷茫的人来说,如鱼得水,于是特 ...
- 使用 IIS 在 Windows 上托管 ASP.NET Core2.0
准备: 操作系统:Windows Server 2008 R2 或更高版本 开发环境:VS2017 第一步:新建项目ASP.NET Core Web应用程序 在 Visual Studio 中,选择“ ...
- PS调出怀旧雨中特写的非主流照片
原图 最终效果 一.打开原图素材,按Ctrl + ALt + ~ 调出高光选区,按Ctrl + Shift + I 反选,然后创建曲线调整图层,适当调暗一点. 二.合并所有图层,点通道面板,选择蓝色通 ...
- os.path 下的各方法
一.os.path os.path.abspath(file) #拿到当前程序(文件)的绝对目录. os.path.split(pathname) # 返回一个元组,第零个元素为文件上级绝对目录,第一 ...
- ES5中文分词(IK)
ElasticSearch5中文分词(IK) ElasticSearch安装 官网:https://www.elastic.co 1.ElasticSearch安装 1.1.下载安装公共密钥 rpm ...
- MyBatis模糊查询不报错但查不出数据的一种解决方案
今天在用MyBatis写一个模糊查询的时候,程序没有报错,但查不出来数据,随即做了一个测试,部分代码如下: @Test public void findByNameTest() throws IOEx ...
- Docker -d : Running modprobe bridge nf_nat failed with message: exit status 1
nf_nat 是做什么用的 - DockOne.iohttp://dockone.io/question/1384 docker-py的配置与使用 - openxxs - 博客园http://www. ...
- java核心API学习
1:java.lang (Object.String.StringBuffer.Thread.System.ClassLoader.Class.Runtime.包装类等)