BZOJ 3884——欧拉降幂和广义欧拉降幂
理论部分
欧拉定理:若 $a,n$ 为正整数,且 $a,n$ 互质,则 $a^{\varphi (n)} \equiv 1(mod \ n)$.
降幂公式:
$$a^b=
\begin{cases}
a^{b \% \varphi(p)} & gcd(a,p)=1 \\
a^b & gcd(a,p)\neq 1,b < \varphi (p) \\
a^{b\% \varphi (p) + \varphi (p)} & gcd(a,p)\neq 1,b \geq \varphi (p)
\end{cases}$$
题目
求 $2^{2^{2...}} \ mod \ p$ 的值,$T$组询问。$T \leq 1000, p \leq {10}^7$
分析:
首先,必须明确模意义下的无穷与真正的无穷是有区别的,(不然无穷的怎么求值
由降幂公式,当 $x \geq \varphi (p)$ 时(这道题中 $x$ 一直为2的无穷次方,肯定大于 $\varphi(p)$),
$$a^x \equiv a^{x \% \phi (p) + \varphi (p)}(mod \ p)$$
所以,令 $f(p) = 2^{2^{2...}}(mod \ p)$,$f(1)=0$,
$$\\f(p)=2^{(2^{2^{...}} mod \; \phi(p)) + \phi(p)}mod \; p \\=2^{f(\phi(p)) + \phi(p)} mod \ p$$
因此可以递归求解。
时间复杂度是多少呢?
求 $\phi(p)$ 是 $\sqrt p$,进行 $\varphi (\varphi (...\varphi (p))) = O(logp)$ 次,直至为1,
所以总的复杂度为 $O(\sqrt p log p)$
#include<bits/stdc++.h>
using namespace std; typedef long long ll;
int p; ll qpow(ll a, ll b, ll p)
{
ll ret = ;
while(b)
{
if(b&) ret = ret*a%p;
a = a*a%p;
b >>= ;
}
return ret;
} int euler_phi(int n)
{
int m = (int)sqrt(n + 0.5);
int ans = n;
for (int i = ; i <= m; i++)
{
if (n % i == )
{
ans = ans / i * (i - );
while (n % i == ) n /= i; //除尽
}
}
if (n > ) ans = ans / n * (n - ); //剩下的不为1,也是素数
return ans;
} int f(int p)
{
if(p == ) return ;
int phip = euler_phi(p);
return qpow(, f(phip)+phip, p);
} int main()
{
int T;
scanf("%d", &T);
while(T--)
{
scanf("%d", &p);
printf("%d\n", f(p));
}
return ;
}
参考链接:
1. https://blog.csdn.net/skywalkert/article/details/43955611
2. https://blog.csdn.net/qq_37632935/article/details/81264965
BZOJ 3884——欧拉降幂和广义欧拉降幂的更多相关文章
- ACM-数论-广义欧拉降幂
https://www.cnblogs.com/31415926535x/p/11447033.html 曾今一时的懒,造就今日的泪 记得半年前去武大参加的省赛,当时的A题就是一个广义欧拉降幂的板子题 ...
- Power Tower(广义欧拉降幂)
题意:https://codeforc.es/contest/906/problem/D 计算区间的: ai ^ ai+1 ^ ai+2.......ar . 思路: 广义欧拉降幂: 注意是自下而上递 ...
- 广义欧拉降幂(欧拉定理)——bzoj3884,fzu1759
广义欧拉降幂对于狭义欧拉降幂任然适用 https://blog.csdn.net/qq_37632935/article/details/81264965?tdsourcetag=s_pctim_ai ...
- bzoj 3884 欧拉定理
求$$2^{2^{2^{2^{…}}}} mod n$$的值,其中n有1e7. 老实说这题挺有趣的,关键是怎么化掉指数,由于是取模意义下的无限个指数,所以使用欧拉定理一定是可以把指数变为不大于$\va ...
- 可控制导航下拉方向的jQuery下拉菜单代码
效果:http://hovertree.com/texiao/nav/1/ 代码如下: <!DOCTYPE html> <html> <head> <meta ...
- 定位和xml解析和gson解析加上拉加载,下拉刷新
这里的上拉加载,下拉刷新用到是依赖包 Mainactivity,xml解析和定位 package com.exmple.autolayout; import java.util.List; impor ...
- UITableView与UISearchController搜索及上拉加载,下拉刷新
#import "ViewController.h" #import "TuanGouModel.h" #import "TuanGouTableVi ...
- PullToRefreshListView上拉加载、下拉刷新
说明:此项目使用studio完成的.需要导入library作为依赖,使用了xuitls获得网络请求.使用Pull解析了XML eclipse中的项目: //注意:此刷新功能是使用的第三方的PullTo ...
- Vue-上拉加载与下拉刷新(mint-ui:loadmore)一个页面使用多个上拉加载后冲突问题
所遇问题: 该页面为双选项卡联动,四个部分都需要上拉加载和下拉刷新功能,使用的mint-ui的loadmore插件,分别加上上拉加载后,只有最后一个的this.$refs.loadmore.onTop ...
随机推荐
- Feign【开启GIZP压缩】
SpringCloudFeign支持对请求和响应进行gzip压缩,以此来提高通信效率. 1.搭建gzip-demo工程 1.1.工程依赖: <parent> <groupId> ...
- 【C++札记】命名空间(namespace)
介绍 命名空间可以解决程序中的同名冲突,尤其大型项目多人开发中经常用到.比如我们使用C++的标准输出std::cout就使用了std命名空间. 使用作用域符:: #include <iostre ...
- 系统集成Facebook授权发布帖子以及获取帖子评论等功能
公司的业务和海外贸易紧密连接,项目中需要对接Facebook.Google.Twitter相关API,下面详细描述一下我们对接Facebook中遇到的问题 1,注册Facebook账户,Faceboo ...
- VMware的下载与安装
VMware的下载与安装 一.虚拟机的下载 1.进入VMware官网,点击左侧导航栏中的下载,再点击图中标记的Workstation Pro,如下图所示. 2.根据操作系统选择合适的产品,在这里以Wi ...
- dict字典
dict字典 字典的概述 • 概述:使⽤键-值(key-value)⽅式存储. • key的特点: • 1.字典中的key必须是唯⼀的 • 2.key值必须是不可变的数据类型:字符串.元组.Numbe ...
- golang之数组与切片
数组 数组可以存放多个同一类型数据,数组也是一种数据类型,在Go中,数组是值类型. 数组的定义: var 数组名 [数组大小]数据类型 var a [5]int 赋初值 a[0] = 1 a ...
- 2019java学习路线图
学习路线图往往是学习一样技术的入门指南.网上搜到的Java学习路线图也是一抓一大把.但是很多学习路线图总结的云里雾里,也没有配套的视频,学习效果并不好. 分享一个完整的Java学习路线图给大家,也是贴 ...
- java 用户线程和守护线程
在Java中通常有两种线程:用户线程和守护线程(也被称为服务线程)通过Thread.setDaemon(false)设置为用户线程通过Thread.setDaemon(true)设置为守护线程线程属性 ...
- go 结构体2 文法
结构体文法表示通过结构体字段的值作为列表来新分配一个结构体. 使用 Name: 语法可以仅列出部分字段.(字段名的顺序无关.) 特殊的前缀 & 返回一个指向结构体的指针. //分配的v1结构体 ...
- shell习题第21题:计算数字的个数
[题目要求] 计算文档a.txt中每一行出现数字的个数并且要计算一下整个文档中一共出现了几个数字 例如a.txt如下: sdhhyh776dbbgbfg dhhdffhhhs556644382 运行结 ...