理论部分

欧拉定理:若 $a,n$ 为正整数,且 $a,n$ 互质,则 $a^{\varphi (n)} \equiv 1(mod \ n)$.

降幂公式:

$$a^b=
\begin{cases}
a^{b \% \varphi(p)} &  gcd(a,p)=1 \\
a^b &  gcd(a,p)\neq 1,b < \varphi (p) \\
a^{b\% \varphi (p) + \varphi (p)} & gcd(a,p)\neq 1,b \geq \varphi (p)
\end{cases}$$

题目

求 $2^{2^{2...}} \ mod \ p$ 的值,$T$组询问。$T \leq 1000, p \leq {10}^7$

分析:

首先,必须明确模意义下的无穷与真正的无穷是有区别的,(不然无穷的怎么求值

由降幂公式,当 $x \geq \varphi (p)$ 时(这道题中 $x$ 一直为2的无穷次方,肯定大于 $\varphi(p)$),

$$a^x \equiv a^{x \% \phi (p) + \varphi (p)}(mod \ p)$$

所以,令 $f(p) = 2^{2^{2...}}(mod \ p)$,$f(1)=0$,

$$\\f(p)=2^{(2^{2^{...}} mod \; \phi(p)) + \phi(p)}mod \; p \\=2^{f(\phi(p)) + \phi(p)} mod \ p$$

因此可以递归求解。

时间复杂度是多少呢?

求 $\phi(p)$ 是 $\sqrt p$,进行 $\varphi (\varphi (...\varphi (p))) = O(logp)$ 次,直至为1,

所以总的复杂度为 $O(\sqrt p log p)$

#include<bits/stdc++.h>
using namespace std; typedef long long ll;
int p; ll qpow(ll a, ll b, ll p)
{
ll ret = ;
while(b)
{
if(b&) ret = ret*a%p;
a = a*a%p;
b >>= ;
}
return ret;
} int euler_phi(int n)
{
int m = (int)sqrt(n + 0.5);
int ans = n;
for (int i = ; i <= m; i++)
{
if (n % i == )
{
ans = ans / i * (i - );
while (n % i == ) n /= i; //除尽
}
}
if (n > ) ans = ans / n * (n - ); //剩下的不为1,也是素数
return ans;
} int f(int p)
{
if(p == ) return ;
int phip = euler_phi(p);
return qpow(, f(phip)+phip, p);
} int main()
{
int T;
scanf("%d", &T);
while(T--)
{
scanf("%d", &p);
printf("%d\n", f(p));
}
return ;
}

参考链接:

1. https://blog.csdn.net/skywalkert/article/details/43955611

2. https://blog.csdn.net/qq_37632935/article/details/81264965

BZOJ 3884——欧拉降幂和广义欧拉降幂的更多相关文章

  1. ACM-数论-广义欧拉降幂

    https://www.cnblogs.com/31415926535x/p/11447033.html 曾今一时的懒,造就今日的泪 记得半年前去武大参加的省赛,当时的A题就是一个广义欧拉降幂的板子题 ...

  2. Power Tower(广义欧拉降幂)

    题意:https://codeforc.es/contest/906/problem/D 计算区间的: ai ^ ai+1 ^ ai+2.......ar . 思路: 广义欧拉降幂: 注意是自下而上递 ...

  3. 广义欧拉降幂(欧拉定理)——bzoj3884,fzu1759

    广义欧拉降幂对于狭义欧拉降幂任然适用 https://blog.csdn.net/qq_37632935/article/details/81264965?tdsourcetag=s_pctim_ai ...

  4. bzoj 3884 欧拉定理

    求$$2^{2^{2^{2^{…}}}} mod n$$的值,其中n有1e7. 老实说这题挺有趣的,关键是怎么化掉指数,由于是取模意义下的无限个指数,所以使用欧拉定理一定是可以把指数变为不大于$\va ...

  5. 可控制导航下拉方向的jQuery下拉菜单代码

    效果:http://hovertree.com/texiao/nav/1/ 代码如下: <!DOCTYPE html> <html> <head> <meta ...

  6. 定位和xml解析和gson解析加上拉加载,下拉刷新

    这里的上拉加载,下拉刷新用到是依赖包 Mainactivity,xml解析和定位 package com.exmple.autolayout; import java.util.List; impor ...

  7. UITableView与UISearchController搜索及上拉加载,下拉刷新

    #import "ViewController.h" #import "TuanGouModel.h" #import "TuanGouTableVi ...

  8. PullToRefreshListView上拉加载、下拉刷新

    说明:此项目使用studio完成的.需要导入library作为依赖,使用了xuitls获得网络请求.使用Pull解析了XML eclipse中的项目: //注意:此刷新功能是使用的第三方的PullTo ...

  9. Vue-上拉加载与下拉刷新(mint-ui:loadmore)一个页面使用多个上拉加载后冲突问题

    所遇问题: 该页面为双选项卡联动,四个部分都需要上拉加载和下拉刷新功能,使用的mint-ui的loadmore插件,分别加上上拉加载后,只有最后一个的this.$refs.loadmore.onTop ...

随机推荐

  1. Vmware中安装的Ubuntu不能全屏问题解决

    现在有了开源的vmtoll可以下载:open-vm-tools   先安装open-vm-tools:sudo  apt-get install open-vm-tools   然后安装:(不知道具体 ...

  2. S2. Android 常用控件

    [概述] Button(普通按钮):点击事件处理 Toast(消息提示) Menu(菜单): Menu + Fragment 实现菜单切换 [Button] 在 MainActivity 对应的布局文 ...

  3. 关于php发送邮件(PHPmailer)的傻瓜式操作

    首先打开QQ邮箱(此处我们以QQ邮箱为例) 点击设置里面的账户开启pop3和smtp(此处需要用到绑定的手机号进行短信或QQ安全中心动态码进行验证) 接着复制以下email代码 //发送邮件 publ ...

  4. MongoDB 逻辑运算符

    逻辑与   $and:要求满足所有查询条件 ,否则返回空 语法:db.集合名.find{ $and: [ { <expression1> }, { <expression2>  ...

  5. 利用Python进行数据分析 第4章 IPython的安装与使用简述

    本篇开始,结合前面所学的Python基础,开始进行实战学习.学习书目为<利用Python进行数据分析>韦斯-麦金尼 著. 之前跳过本书的前述基础部分(因为跟之前所学的<Python基 ...

  6. Spring (3)框架

    Spring第三天笔记 今日内容 Spring的核心之一 -  AOP思想 (1) 代理模式- 动态代理 ① JDK的动态代理 (Java官方) ② CGLIB 第三方代理 (2) AOP思想在Spr ...

  7. sql server 学习笔记 (nested transaction 嵌套事务)

    什么时候会用到嵌套事务 ? 为了代码复用,我们会写许多的储蓄过程,而中间如果需要使用到 transaction 难免就会发生嵌套了. sql server 并不直接支持嵌套事务. 但它可以用一些招式来 ...

  8. 18-MySQL DBA笔记-MySQL Server调优

    第18章 MySQL Server调优 本章将为读者介绍针对MySQL Server的优化,这也是DBA最熟悉的领域之一.首先我们介绍MySQL的主要参数,然后,讲述常见硬件资源的优化.我们假设读者已 ...

  9. Myeclipse debug 调式java 报错,留做后面解决!

    FATAL ERROR in native method: JDWP No transports initialized, jvmtiError=AGENT_ERROR_TRANSPORT_INIT( ...

  10. 分享一张理解数据库inner join,left join,right join,full join的图