转博客大法好

自己画一画看一看,就会体会到这个设置关键点的强大之处了.

CODE(sa)

O(nlogn)→1436msO(nlogn)\to 1436msO(nlogn)→1436ms

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
template<class T>inline void read(T &num) {
register char ch; register int flg = 1;
while(!isdigit(ch=getchar()))if(ch=='-')flg=-flg;
for(num=0; isdigit(ch); num=num*10+ch-'0', ch=getchar());
num *= flg;
}
const int MAXN = 5e4+5; int x[MAXN], y[MAXN], c[MAXN], Log[MAXN]; int n, s[MAXN], b[MAXN], tot;
struct SA {
int sa[MAXN], rk[MAXN], h[MAXN], f[MAXN][16];
inline void Get_Sa(int m) {
for(int i = 1; i <= m; ++i) c[i] = 0;
for(int i = 1; i <= n; ++i) ++c[x[i]=s[i]];
for(int i = 2; i <= m; ++i) c[i] += c[i-1];
for(int i = n; i >= 1; --i) sa[c[x[i]]--] = i;
for(int k = 1; k <= n; k<<=1) {
int p = 0;
for(int i = n-k+1; i <= n; ++i) y[++p] = i;
for(int i = 1; i <= n; ++i) if(sa[i]>k) y[++p] = sa[i]-k;
for(int i = 1; i <= m; ++i) c[i] = 0;
for(int i = 1; i <= n; ++i) ++c[x[i]];
for(int i = 2; i <= m; ++i) c[i] += c[i-1];
for(int i = n; i >= 1; --i) sa[c[x[y[i]]]--] = y[i];
swap(x, y);
x[sa[1]] = 1; p = 1;
for(int i = 2; i <= n; ++i)
x[sa[i]] = (y[sa[i]] == y[sa[i-1]] && y[sa[i]+k] ==y[sa[i-1]+k]) ? p : ++p;
if((m=p) == n) break;
}
}
inline void Get_Height() {
int k = 0;
for(int i = 1; i <= n; ++i) rk[sa[i]] = i;
for(int i = 1; i <= n; ++i) {
if(rk[i] == 1) continue;
if(k) --k;
int j = sa[rk[i]-1];
while(i+k <= n && j+k <= n && s[i+k] == s[j+k]) ++k;
h[rk[i]] = k;
}
}
inline void rev() {
reverse(rk + 1, rk + n + 1);
for(int i = 1; i <= n; ++i) sa[i] = n-i+1;
}
inline void init() {
Get_Sa(n);
Get_Height();
}
inline void initST() {
for(int i = 1; i <= n; ++i) f[i][0] = h[i];
for(int j = 1; j <= Log[n]; ++j)
for(int i = 1; i <= n-(1<<j)+1; ++i)
f[i][j] = min(f[i][j-1], f[i+(1<<j-1)][j-1]);
}
inline int query(int l, int r) {
l = rk[l], r = rk[r];
if(l > r) swap(l, r);
++l;
int k = Log[r-l+1];
return min(f[l][k], f[r-(1<<k)+1][k]);
}
}sa1, sa2;
int m;
int main() {
read(n), read(m);
for(int i = 1; i <= n; ++i) read(s[i]);
--n;
for(int i = 1; i <= n; ++i) b[++tot] = (s[i]=s[i+1]-s[i]);
s[n+1] = 0;
sort(b + 1, b + tot + 1); tot = unique(b + 1, b + tot + 1) - b - 1;
for(int i = 1; i <= n; ++i) s[i] = lower_bound(b + 1, b + tot + 1, s[i]) - b; for(int i = 2; i <= n; ++i) Log[i] = Log[i>>1] + 1;
sa1.init(), sa1.initST();
reverse(s + 1, s + n + 1);
sa2.init(), sa2.rev(), sa2.initST();
LL ans = 0;
for(int len = 1; (len<<1)+m <= n; ++len)
for(int i = 1, j; (j=i+len+m) <= n; i += len) {
int l = min(sa2.query(i, j), len), r = min(sa1.query(i, j), len);
if(l + r > len) ans += l + r - len;
}
printf("%lld\n", ans);
}

CODE(hash)

O(nlog2n)→688msO(nlog^2n)\to 688msO(nlog2n)→688ms

实测hash速度是sa的2.5倍…

常数的幽怨…

市面上貌似找不到hash的代码的说…

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
template<class T>inline void read(T &num) {
register char ch; register int flg = 1;
while(!isdigit(ch=getchar()))if(ch=='-')flg=-flg;
for(num=0; isdigit(ch); num=num*10+ch-'0', ch=getchar());
num *= flg;
}
const int MAXN = 5e4+5;
const int p = 137;
int n, m, s[MAXN], h[MAXN], mul[MAXN];
inline int hsh(int l, int r) {
return h[r] - h[l-1]*mul[r-l+1];
}
inline int querypre(int i, int j, int up) {
int l = 0, r = min(min(i, j), up), mid;
while(l < r) {
mid = (l + r + 1) >> 1;
if(hsh(i-mid+1, i) == hsh(j-mid+1, j)) l = mid;
else r = mid-1;
}
return l;
}
inline int querysuf(int i, int j, int up) {
int l = 0, r = min(min(n-i+1, n-j+1), up), mid;
while(l < r) {
mid = (l + r + 1) >> 1;
if(hsh(i, i+mid-1) == hsh(j, j+mid-1)) l = mid;
else r = mid-1;
}
return l;
}
int main() {
read(n), read(m); mul[0] = 1;
for(int i = 1; i <= n; ++i) read(s[i]);
for(int i = 1; i < n; ++i) {
h[i] = h[i-1] * p + s[i+1]-s[i];
mul[i] = mul[i-1] * p;
}
s[n] = 0; --n;
LL ans = 0;
for(int len = 1; (len<<1)+m <= n; ++len)
for(int i = 1, j; (j=i+len+m) <= n; i += len) {
int l = querypre(i, j, len), r = querysuf(i, j, len);
if(l + r > len) ans += l + r - len;
}
printf("%lld\n", ans);
}

BZOJ 2119: 股市的预测 (Hash / 后缀数组 + st表)的更多相关文章

  1. BZOJ 2119 股市的预测(后缀数组)

    首先要差分+离散化. 然后就是求形如ABA的串有多少,其中B的长度确定为k. 我们用到了设置关键点的思想.我们枚举A的长度L.然后在\(1,1+L,1+L*2,1+L*3...\)设置关键点.然后我们 ...

  2. bzoj千题计划312:bzoj2119: 股市的预测(后缀数组+st表)

    https://www.lydsy.com/JudgeOnline/problem.php?id=2119 题意:将给定数组差分后,求ABA形式的字串个数,要求|B|=m,|A|>0 1.后缀数 ...

  3. 【BZOJ 2119】 2119: 股市的预测 (后缀数组+分块+RMQ)

    2119: 股市的预测 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 404  Solved: 188 Description 墨墨的妈妈热爱炒股,她 ...

  4. SPOJ 687 Repeats(后缀数组+ST表)

    [题目链接] http://www.spoj.com/problems/REPEATS/en/ [题目大意] 求重复次数最多的连续重复子串的长度. [题解] 考虑错位匹配,设重复部分长度为l,记s[i ...

  5. POJ 3693 Maximum repetition substring(后缀数组+ST表)

    [题目链接] poj.org/problem?id=3693 [题目大意] 求一个串重复次数最多的连续重复子串并输出,要求字典序最小. [题解] 考虑错位匹配,设重复部分长度为l,记s[i]和s[i+ ...

  6. BZOJ_4516_[Sdoi2016]生成魔咒_后缀数组+ST表+splay

    BZOJ_4516_[Sdoi2016]生成魔咒_后缀数组+ST表+splay Description 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔 ...

  7. UVA10829 L-Gap Substrings(后缀数组+ST表)

    后缀数组+ST表. 代填的坑. \(Code\ Below:\) #include <bits/stdc++.h> #define ll long long using namespace ...

  8. BZOJ 2119: 股市的预测 [后缀数组 ST表]

    2119: 股市的预测 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 331  Solved: 153[Submit][Status][Discuss ...

  9. BZOJ 2119: 股市的预测 SA

    2119: 股市的预测 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 434  Solved: 200[Submit][Status][Discuss ...

随机推荐

  1. 图的DFS与BFS遍历

    一.图的基本概念 1.邻接点:对于无向图无v1 与v2之间有一条弧,则称v1与v2互为邻接点:对于有向图而言<v1,v2>代表有一条从v1到v2的弧,则称v2为v1的邻接点. 2.度:就是 ...

  2. Java实现二叉树地遍历、求深度和叶子结点的个数

    一.分析 二叉树是n个结点所构成的集合,它或为空树,或为非空树.对于非空树,它有且仅有一个根结点,且除根结点以外的其余结点分为两个互不相交的子集,分别称为左子树和右子树,它们本身又都是二叉树. 显而易 ...

  3. C++类的对象和类的指针的区别

    #include <iostream> #include <string> using namespace std; class Student { public: stati ...

  4. 第2章:Python生态工具

    1.Python内置小工具 1).1秒钟启动一个下载服务器: python -m SimpleHTTPServer python3 -m http.server 会在当前目录下启动一个文件下载服务器, ...

  5. Docker-PS命令解析

    查看 docker 容器,必然要用到 docker ps 命令.其基本格式为: docker ps [OPTIONS] 关键在于 OPTIONS(选项): 1 常见用法 1. 最常见的用法 $ doc ...

  6. mac手册汉化 2019

    1.安装依赖 brew install automake brew install opencc 2.编译 wget https://github.com/man-pages-zh/manpages- ...

  7. 1-Perl 简介

    Perl 是 Practical Extraction and Report Language 的缩写,可翻译为 "实用报表提取语言".Perl 是高级.通用.直译式.动态的程序语 ...

  8. Spring boot data jpa 示例

    一.maven pom.xml文件 <?xml version="1.0" encoding="UTF-8"?> <project xmlns ...

  9. MFC之CImageList(1)

    CImageList BOOL Create( int cx, int cy, UINT nFlags, int nInitial, int nGrow ); 其中各项参数的含义为:cx定义图像的宽度 ...

  10. oracle数据库锁的问题

    查询当前数据库被锁的对象 select b.owner,b.object_name,a.SESSION_ID,a.LOCKED_MODE from v$locked_object a dba_obje ...