线性素数筛(欧拉筛)(超级好的MuBan)
Problem:找出小于等于n的所有素数的个数。
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e6;
int prime[maxn]; // 欧拉线性素数筛,O(n)
bool vis[maxn]; // 标记
int Prime(int n)
{
memset(vis,false,sizeof(vis));
int cnt = 0;
vis[0] = vis[1] = true;
for(int i = 2; i <= n; i ++)
{
if(!vis[i])prime[cnt++] = i;
for(int j = 0; j < cnt && i*prime[j] <= n; j ++)
{
vis[i*prime[j]] = true;
if(!(i%prime[j])) break;
}
}
return cnt;
}
int main()
{
int n;
cin >> n;
int ans = 0;
ans = Prime(n);
cout << ans << endl;
return 0;
}
if(i % prime[j] == 0) break;
解释:
首先,任何合数都能表示成多个素数的积。所以,任何的合数肯定有一个最小质因子。我们通过这个最小质因子就可以判断什么时候不用继续筛下去了。当i是prime[j]的整数倍时(i % prime[j] == 0),i*prime[j+1]肯定被筛过,跳出循环。
因为i可以看做prime[j]*某个数, i*prime[j+1]就可以看做 prime[j]*某个数*prime[j+1] 。而 prime[j] 必定小于 prime[j+1],
所以 i*prime[j+1] 必定已经被 prime[j]*某个数 筛掉,就不用再做了√同时我们可以发现在满足程序里的两个条件的时候,prime[j]必定是prime[j]*i的最小质因子。这个性质在某些题里可以用到。
这样就可以在线性时间内找到素数啦~\(≧▽≦)/~
解释转自https://blog.csdn.net/tianwei0822/article/details/78309453
线性素数筛(欧拉筛)(超级好的MuBan)的更多相关文章
- noip复习——线性筛(欧拉筛)
整数的唯一分解定理: \(\forall A\in \mathbb {N} ,\,A>1\quad \exists \prod\limits _{i=1}^{s}p_{i}^{a_{i}}=A\ ...
- 素数筛&&欧拉筛
折腾了一晚上很水的数论,整个人都萌萌哒 主要看了欧拉筛和素数筛的O(n)的算法 这个比那个一长串英文名的算法的优势在于没有多次计算一个数,也就是说一个数只筛了一次,主要是在%==0之后跳出实现的,具体 ...
- 欧拉筛,线性筛,洛谷P2158仪仗队
题目 首先我们先把题目分析一下. emmmm,这应该是一个找规律,应该可以打表,然后我们再分析一下图片,发现如果这个点可以被看到,那它的横坐标和纵坐标应该互质,而互质的条件就是它的横坐标和纵坐标的最大 ...
- 欧拉筛(线性筛) & 洛谷 P3383 【模板】线性筛素数
嗯.... 埃氏筛和欧拉筛的思想都是相似的: 如果一个数是素数,那么它的所有倍数都不是素数.... 这里主要介绍一下欧拉筛的思路:(欧拉筛的复杂度大约在O(n)左右... 定义一个prime数组,这个 ...
- 埃氏筛优化(速度堪比欧拉筛) + 洛谷 P3383 线性筛素数 题解
我们一般写的埃氏筛消耗的时间都是欧拉筛的三倍,但是欧拉筛并不好想(对于我这种蒟蒻) 虽然 -- 我 -- 也可以背过模板,但是写个不会的欧拉筛不如写个简单易懂的埃氏筛 于是就有了优化 这个优化还是比较 ...
- 欧拉筛 线性筛 素数+莫比乌斯的mu[]
https://blog.csdn.net/qq_39763472/article/details/82428602 模板来自https://blog.csdn.net/Avalon_cc/artic ...
- POJ-3126.PrimePath(欧拉筛素数打表 + BFS)
给出一篇有关素数线性筛和区间筛的博客,有兴趣的读者可以自取. 本题大意: 给定两个四位的素数,没有前导零,每次变换其中的一位,最终使得两个素数相等,输出最小变换次数.要求变换过程中的数也都是素数. 本 ...
- POJ2909_Goldbach's Conjecture(线性欧拉筛)
Goldbach's Conjecture: For any even number n greater than or equal to 4, there exists at least one p ...
- The Euler function(线性筛欧拉函数)
/* 题意:(n)表示小于n与n互质的数有多少个,给你两个数a,b让你计算a+(a+1)+(a+2)+......+b; 初步思路:暴力搞一下,打表 #放弃:打了十几分钟没打完 #改进:欧拉函数:具体 ...
- [51NOD1181]质数中的质数(质数筛法)(欧拉筛)
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1181 思路:欧拉筛出所有素数和一个数的判定,找到大于n的最小质 ...
随机推荐
- 进阶Java编程(5)基础类库
Java基础类库 1,StringBuffer类 String类是在所有项目开发之中一定会使用到的一个功能类,并且这个类拥有如下的特点: ①每一个字符串的常量都属于一个String类的匿名对象,并且不 ...
- Javascript——数据类型 和 注释
数据类型:JavaScript中包括如下7种数据类型:字符串.数字.布尔.数组.对象.null.undefined 字符串: 注意:字符串类型的数据需要使用单引号或双引号引起来. 数字: 注意:Jav ...
- 一个小时前,美国主流媒体,头条,谷歌两位创始人突然宣布退下来,把万亿美元的帝国交给Sundar Pichai
一个小时前,美国各大主流媒体头条,谷歌两位创始人,放弃了万亿美元的帝国控制权,交给了CEO Sundar Pichai.
- Redis-Hash常用命令
Redis-Hash常用命令 hset key field value 设置一个散列,但是在散列中一次只能设置一个属性,如果要批量设置多个属性,则需要使用 hmset命令 hget key field ...
- yii2-cache组件第三个参数Dependency $dependency的作用浅析
用法如下: $cache->set($key, $result, Configs::instance()->cacheDuration, new TagDependency([ 'tags ...
- Oracle【增删改&数据的备份】
增删改的SQL语句执行完毕后,不会立马进行数据的写入数据库(这时数据在内存中),需要手动对数据进行提交(commit),如果数据出问题,可以使用回滚.主键:非空唯一的 --在一张表中,某字段值是非空唯 ...
- GMT、UTC、UNIX时间戳、时区
GMT.UTC.CTS: UTC时间:世界协调时间(UTC)是世界上不同国家用来调节时钟和时间的主要时间标准,也就是零时区的时间.UTC是以原子时秒长为基础,在时刻上尽量接近于GMT的一种时间计量系统 ...
- CentOS7连接无线网络
背景 CentOS7.6最小化安装,没有网线,幸好有无线网卡.下面我们直接进入主题. 附:安装教程 主题--连接无线网络 最小化安装后,裸机没有ifconfig,没有iw,最可怕的是没有网线 但我 ...
- Linux ping route nslookup ifconfig arp traceroute
route -n 查看默认网关 ping -c 包个数 ping -s 包大小 host 目标主机 主机解析 nslookup 目标主机 arp -an 查看arp arp -s IP地 MA ...
- Selenium(5)
一.WebDriver结合Junit的使用 1.Junit中常用的断言 (1)assertEquals:断言实际结果与预期结果是否相等 Equals:相等 格式:assertEquals(预期值,实际 ...