线性素数筛(欧拉筛)(超级好的MuBan)
Problem:找出小于等于n的所有素数的个数。
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e6;
int prime[maxn]; // 欧拉线性素数筛,O(n)
bool vis[maxn]; // 标记
int Prime(int n)
{
memset(vis,false,sizeof(vis));
int cnt = 0;
vis[0] = vis[1] = true;
for(int i = 2; i <= n; i ++)
{
if(!vis[i])prime[cnt++] = i;
for(int j = 0; j < cnt && i*prime[j] <= n; j ++)
{
vis[i*prime[j]] = true;
if(!(i%prime[j])) break;
}
}
return cnt;
}
int main()
{
int n;
cin >> n;
int ans = 0;
ans = Prime(n);
cout << ans << endl;
return 0;
}
if(i % prime[j] == 0) break;
解释:
首先,任何合数都能表示成多个素数的积。所以,任何的合数肯定有一个最小质因子。我们通过这个最小质因子就可以判断什么时候不用继续筛下去了。当i是prime[j]的整数倍时(i % prime[j] == 0),i*prime[j+1]肯定被筛过,跳出循环。
因为i可以看做prime[j]*某个数, i*prime[j+1]就可以看做 prime[j]*某个数*prime[j+1] 。而 prime[j] 必定小于 prime[j+1],
所以 i*prime[j+1] 必定已经被 prime[j]*某个数 筛掉,就不用再做了√同时我们可以发现在满足程序里的两个条件的时候,prime[j]必定是prime[j]*i的最小质因子。这个性质在某些题里可以用到。
这样就可以在线性时间内找到素数啦~\(≧▽≦)/~
解释转自https://blog.csdn.net/tianwei0822/article/details/78309453
线性素数筛(欧拉筛)(超级好的MuBan)的更多相关文章
- noip复习——线性筛(欧拉筛)
整数的唯一分解定理: \(\forall A\in \mathbb {N} ,\,A>1\quad \exists \prod\limits _{i=1}^{s}p_{i}^{a_{i}}=A\ ...
- 素数筛&&欧拉筛
折腾了一晚上很水的数论,整个人都萌萌哒 主要看了欧拉筛和素数筛的O(n)的算法 这个比那个一长串英文名的算法的优势在于没有多次计算一个数,也就是说一个数只筛了一次,主要是在%==0之后跳出实现的,具体 ...
- 欧拉筛,线性筛,洛谷P2158仪仗队
题目 首先我们先把题目分析一下. emmmm,这应该是一个找规律,应该可以打表,然后我们再分析一下图片,发现如果这个点可以被看到,那它的横坐标和纵坐标应该互质,而互质的条件就是它的横坐标和纵坐标的最大 ...
- 欧拉筛(线性筛) & 洛谷 P3383 【模板】线性筛素数
嗯.... 埃氏筛和欧拉筛的思想都是相似的: 如果一个数是素数,那么它的所有倍数都不是素数.... 这里主要介绍一下欧拉筛的思路:(欧拉筛的复杂度大约在O(n)左右... 定义一个prime数组,这个 ...
- 埃氏筛优化(速度堪比欧拉筛) + 洛谷 P3383 线性筛素数 题解
我们一般写的埃氏筛消耗的时间都是欧拉筛的三倍,但是欧拉筛并不好想(对于我这种蒟蒻) 虽然 -- 我 -- 也可以背过模板,但是写个不会的欧拉筛不如写个简单易懂的埃氏筛 于是就有了优化 这个优化还是比较 ...
- 欧拉筛 线性筛 素数+莫比乌斯的mu[]
https://blog.csdn.net/qq_39763472/article/details/82428602 模板来自https://blog.csdn.net/Avalon_cc/artic ...
- POJ-3126.PrimePath(欧拉筛素数打表 + BFS)
给出一篇有关素数线性筛和区间筛的博客,有兴趣的读者可以自取. 本题大意: 给定两个四位的素数,没有前导零,每次变换其中的一位,最终使得两个素数相等,输出最小变换次数.要求变换过程中的数也都是素数. 本 ...
- POJ2909_Goldbach's Conjecture(线性欧拉筛)
Goldbach's Conjecture: For any even number n greater than or equal to 4, there exists at least one p ...
- The Euler function(线性筛欧拉函数)
/* 题意:(n)表示小于n与n互质的数有多少个,给你两个数a,b让你计算a+(a+1)+(a+2)+......+b; 初步思路:暴力搞一下,打表 #放弃:打了十几分钟没打完 #改进:欧拉函数:具体 ...
- [51NOD1181]质数中的质数(质数筛法)(欧拉筛)
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1181 思路:欧拉筛出所有素数和一个数的判定,找到大于n的最小质 ...
随机推荐
- Navicat 12的安装与使用(附加破解)
地址https://blog.csdn.net/tomos428/article/details/80483450?tdsourcetag=s_pctim_aiomsg
- vuejs 深度监听
data: { obj: { a: 123 } }, 监听obj中a属性 watch: { 'obj.a': { handler(newName, oldName) { console.log('ob ...
- 最新Cocoapods 安装及使用
1.移除现有Ruby默认源 gem sources --remove https://rubygems.org/ 2.使用新的源 gem sources -a https://ruby.taobao. ...
- Java注解【一、概述】
前面几篇Java学习笔记都是半夜写的,比较伤身体,今天开始想调整生物钟,早上起来学2小时,看看能坚持多久 本周目标: 1.JavaJDBC使用 2.JavaWeb编程 3.Java框架基础(反射+注解 ...
- java_day08_GUI
第八章:GUI组件 1.GUI概述-AWT和Swing 图形用户界面(Graphics User Interface, GUI) 是用户与程序交互的窗口,它比基于命令行的界面更直观并且更友好. GUI ...
- java_day07_异常
第七章: 异常 1.异常概述 在我们日常生活中,有时会出现各种各样的异常,例如:职工小王开车去上班,在正常情况下,小王会准时到达单位.但是天有不测风云,在小王去上班时,可能会遇到一些异常情况,比如小王 ...
- GNU编译器:Codesourcery
Codesourcery G++是个商业软件, 不过它有个lite版本,是完全免费的,只不过没有IDE,只有commmand line. Codesourcery G++支持coldfire, pow ...
- Samba编码设置方法
弟管理學校的網頁伺服器,該伺服器也同時是大家的分享檔案集散中心,是以Linux架設起來的,該伺服器以 Unicode 作為系統編碼,而其他Windows系統則是big5(MS950)編碼,最近我要讓另 ...
- Linux下源码编译安装MySql,centeros7
1. 安cmake工具 # yum install -y cmake 2. 创建mysql用户 #useradd -s /sbin/nologin mysql //设置为非登陆用户(安全) 3. ...
- Datasets and Evaluation Metrics used in Recommendation System
Movielens and Netflix remain the most-used datasets. Other datasets such as Amazon, Yelp and CiteUli ...