题意

题解

从大到小枚举$l$, 把一个序列从$2^{l+1}$分成两个独立的$2l$,去除两半的影响。
设去除前的序列为$b$, 去除后序列为$b'$
则有$b_{2
{l+1}-1}-b_{2l-1}=\sum{2^{l+1}-1}b_i$
考虑左边的一个位置$d$与右边的位置$d+2l$相对应
考虑一个序列$s_0$的第$i$位为$\text((i\ \text\ d)\ \text\ i)$,$s_1$为把$s_1$的$d$换成$d+2
l$的结果
显然两个序列左半部分完全一样,右半部分完全相反
设$z$为$b'$与$s_0$(或$s_1$)左半部分对应位置乘积之和,$y_0,y_1$分别为$b'$与$s_0,s_1$右半部分对应位置乘积之和
则$b'd=z,b'{d+2^l}=y_1$
且有方程$z+y_0=b_d,z+y_1=b
{d+2l},y_0+y_1=b_{2{l+1}-1}-b_{2^l-1}$
解之即可。

时间复杂度$O(n\log n)$.

代码

#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<cassert>
#define llong long long
using namespace std; char c[40000010];
int ns;
inline llong read(){
while(c[ns]<'0'||c[ns]>'9')ns++;
llong x=0;
while(c[ns]>='0'&&c[ns]<='9')x=(x<<3)+(x<<1)+c[ns++]-'0';
return x;
} const int N = 1<<20;
llong a[N+3];
int n; int main()
{
c[fread(c,1,40000010,stdin)]=0; //input optimization
n = read();
for(int i=0; i<n; i++) a[i] = read();
for(int i=(n>>1); i; i>>=1)
{
for(int j=0; j<n; j+=(i<<1))
{
llong tmp = a[j+(i<<1)-1]-a[j+i-1];
for(int k=0; k<i; k++)
{
llong x = a[j+k],y = a[j+i+k];
a[j+k] = (-tmp+x+y)>>1,a[j+i+k] = (tmp-x+y)>>1;
}
}
}
for(int i=0; i<n; i++) printf("%lld ",a[i]); puts("");
return 0;
}

BZOJ 5267 特工 (类FWT)的更多相关文章

  1. BZOJ.4589.Hard Nim(FWT)

    题目链接 FWT 题意即,从所有小于\(m\)的质数中,选出\(n\)个数,使它们异或和为\(0\)的方案数. 令\(G(x)=[x是质数]\),其实就是对\(G(x)\)做\(n\)次异或卷积后得到 ...

  2. bzoj 4589 Hard Nim——FWT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4589 一开始异或和为0的话先手必败.有 n 堆,每堆可以填那些数,求最后异或和为0的方案数, ...

  3. bzoj 4589 Hard Nim —— FWT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4589 先手必败,是一开始所有石子的异或和为0: 生成函数 (xpri[1] + xpri[2 ...

  4. BZOJ 4589 Hard Nim ——FWT

    [题目分析] 位运算下的卷积问题. FWT直接做. 但还是不太民白,发明者要承担泽任的. [代码] #include <cstdio> #include <cstring> # ...

  5. BZOJ 4555(第二类斯特林数+NTT)

    传送门 解题思路 数学题,推式子.求\(f(n)=\sum\limits_{i=0}^n\sum\limits_{j=0}^iS(i,j)2^jj!\) 首先可以把\(j\)往前提: \[f(n)=\ ...

  6. Java类的继承与多态特性-入门笔记

    相信对于继承和多态的概念性我就不在怎么解释啦!不管你是.Net还是Java面向对象编程都是比不缺少一堂课~~Net如此Java亦也有同样的思想成分包含其中. 继承,多态,封装是Java面向对象的3大特 ...

  7. 洛谷 4106 / bzoj 3614 [HEOI2014]逻辑翻译——思路+类似FWT

    题目:https://www.luogu.org/problemnew/show/P4106 https://www.lydsy.com/JudgeOnline/problem.php?id=3614 ...

  8. bzoj 4589 FWT

    #include<bits/stdc++.h> #define ll long long using namespace std; ; ; ; ; <<],b[<< ...

  9. bzoj千题计划308:bzoj4589: Hard Nim(倍增FWT+生成函数)

    https://www.lydsy.com/JudgeOnline/problem.php?id=4589 n*m*m 做法 dp[i][j] 前i堆石子,异或和为j的方案数 第一重循环可以矩阵快速幂 ...

随机推荐

  1. shiro过滤器机制

    shiro内置过滤器介绍 https://blog.csdn.net/qq_35608780/article/details/71703197 Shiro的Filter机制详解---源码分析 http ...

  2. C#面向对象14 List泛型集合/装箱和拆箱/字典集合(Dictionary)

    1.List泛型集合 using System; using System.Collections.Generic; using System.Linq; using System.Text; usi ...

  3. O052、Create Volume 操作 (Part III)

    参考https://www.cnblogs.com/CloudMan6/p/5617980.html       Jun 20 17:15:56 DevStack-Rocky-Compute-22 c ...

  4. 99乘法表(js)

    //九九乘法表 let i,j,str; for(i=1;i<=9;i++) { str = ""; for(j=1;j<=i;j++) { str = str+i+' ...

  5. dart 函数练习

    import 'dart:convert'; import 'dart:html'; void main() { _getIPAddress() { final url = 'https://http ...

  6. Samba set of user authentication and file access rights

    This series is compatible with Linux certification exam LPIC. A typical Linux user-level topics omit ...

  7. deep_learning_Function_tf.equal(tf.argmax(y, 1),tf.argmax(y_, 1))用法

    [Tensorflow] tf.equal(tf.argmax(y, 1),tf.argmax(y_, 1))用法 作用:输出正确的预测结果利用tf.argmax()按行求出真实值y_.预测值y最大值 ...

  8. 1.java多线程_实现线程的两种方式

    1.java多线程基本知识 1.1.进程介绍 不管是我们开发的应用程序,还是我们运行的其他的应用程序,都需要先把程序安装在本地的硬盘上.然后找到这个程序的启动文件, 启动程序的时候,其实是电脑把当前的 ...

  9. django_celery_results安装的坑

    前言  在Celery4.0之前的版本中,有一个专门供Django使用的Celery版本django-celery.但现在Celery已经统一为一个版本,所以直接安装原生的Celery即可.这里就暂时 ...

  10. PLSQL功能一览(1/2)

    用了Oracle几年了,除了PLSQL几乎就没用过别的工具.临时起义想看看PLSQL有哪些功能是我平时没注意的,别是一直有好办法,我却用着笨办法. 本文针对PLSQL12.0.7 1.登录以后使用My ...