出处:http://www.cnblogs.com/peng-ym/p/8652288.html   (  直接去出处那看就好了 )

题目描述

  • 神犇YY虐完数论后给傻×kAc出了一题
  • 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对
    kAc这种傻×必然不会了,于是向你来请教……
  • 多组输入

#include<bits/stdc++.h>
#define LL long long
#define ULL unsigned long long
#define rep(i,j,k) for(int i=j;i<=k;i++)
#define dep(i,j,k) for(int i=k;i>=j;i--)
#define INF 0x3f3f3f3f
#define mem(i,j) memset(i,j,sizeof(i))
#define make(i,j) make_pair(i,j)
#define pb push_back
using namespace std;
const int N=1e7+;
bool vis[N];
int pre[N],sum[N],mu[N],tot;
void init() {
mu[]=;
rep(i,,) {
if(!vis[i]) { pre[++tot]=i; mu[i]=- ; }
rep(j,,tot) {
if(i*pre[j]>N-) break;
vis[i*pre[j]]=;
if(i%pre[j]==) break;
mu[i*pre[j]]=-mu[i];
}
}
rep(j,,tot) {
for(int i=;i*pre[j]<=N-;i++) {
sum[i*pre[j]]+=mu[i];
}
}
rep(i,,N-) sum[i]+=sum[i-];
}
int main() {
init();
int t,n,m;
scanf("%d",&t);
while(t--) {
scanf("%d %d",&n,&m); if(n>m) swap(n,m);
LL ans=;
for(int l=,r;l<=n;l=r+) {
r=min(n/(n/l),m/(m/l));
ans+=1LL*(n/l)*(m/l)*(sum[r]-sum[l-]);
}
printf("%lld\n",ans);
}
return ;
}

洛谷【P2257】 YY的GCD的更多相关文章

  1. 洛谷 P2257 YY的GCD

    洛谷 P2257 YY的GCD \(solution:\) 这道题完全跟[POI2007]ZAP-Queries (莫比乌斯反演+整除分块) 用的一个套路. 我们可以列出答案就是要我们求: \(ans ...

  2. 洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块

    https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum ...

  3. 洛谷 P2257 YY的GCD 题解

    原题链接 庆祝: 数论紫题 \(T4\) 达成! 莫比乌斯 \(T1\) 达成! yy 真是个 神犇 前记 之前我觉得: 推式子,直接欧拉筛,筛出个 \(\phi\),然后乱推 \(\gcd\) 就行 ...

  4. 洛谷 P2257 - YY的GCD(莫比乌斯反演+整除分块)

    题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. ...

  5. 洛谷P2257 YY的GCD 莫比乌斯反演

    原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...

  6. 洛谷P2257 YY的GCD

    今日份是数论 大概是..从小学奥数到渐渐毒瘤 那就简单列一下目录[大雾 同余 质数密度 唯一分解定理 互质 完全剩余系 简化剩余系 欧拉函数 逆元 斐蜀定理 阶(及其性质) 欧拉定理 费马小定理 原根 ...

  7. 洛谷P2257 YY的GCD(莫比乌斯反演)

    传送门 原来……莫比乌斯反演是这么用的啊……(虽然仍然不是很明白) 首先,题目所求如下$$\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=prim]$$ 我们设$f(d)$表示$g ...

  8. 解题:洛谷2257 YY的GCD

    题面 初见莫比乌斯反演 有一个套路是关于GCD的反演经常设$f(d)=\sum_{gcd(i,j)==d},g(d)=\sum_{d|gcd(i,j)}$,然后推推推 $\sum\limits_{i= ...

  9. [洛谷2257]YY的GCD 题解

    整理题目转化为数学语言 题目要我们求: \[\sum_{i=1}^n\sum_{i=1}^m[gcd(i,j)=p]\] 其中 \[p\in\text{质数集合}\] 这样表示显然不是很好,所以我们需 ...

  10. 洛谷 2257 - YY的GCD

    莫比乌斯反演半模板题 很容易可以得到 \[Ans = \sum\limits_{p \in prime} \sum\limits_{d = 1}^{\min (\left\lfloor\frac{a} ...

随机推荐

  1. [DEBUG] Spring boot前端html无法下载示例文件

    更新:原方法打jar包的时候是可以的,后来我打war包之后下载的文件就是0字节.尴尬:) 所以现在更换一种方法,然后打war包.在服务器已测试成功. 前端不需要改变,只需要更改controller: ...

  2. php 连接webservice接口

    首先谢谢前人, 引用:https://www.cnblogs.com/xbxxf/p/10103430.html 本来说对接接口,我以为是一扮curl接口形式,结果最后给接口锝时候才告诉我是webse ...

  3. android中sqlite数据库的基本使用和添加多张表

    看了很多关于android使用sqlite数据库的文章,很多都是介绍了数据库的建立和表的建立,而表通常都是只建立一张,而实际情况我们用到的表可能不止一张,那这种情况下我们又该怎么办呢,好了,下面我教大 ...

  4. Guide 哥:有哪些程序员受用一生的好习惯?

    本文来自 Guide 哥开源的 Github 仓库 programmer-advancement:https://github.com/Snailclimb/programmer-advancemen ...

  5. vue开发中利用正则限制input框的输入(手机号、非0开头的正整数等)

    我们在前端开发中经常会碰到类似手机号输入获取验证码的情况,通常情况下手机号的输入需要只能输入11位的整数数字.并且需要过滤掉一些明显不符合手机号格式的输入,那么我们就需要用户在输入的时候就控制可以输入 ...

  6. springboot-异步、发送邮件(一)

    pom.xml <!--邮件javax.mail--> <dependency> <groupId>org.springframework.boot</gro ...

  7. java读取串口-mfz-rxtx-2.2-20081207-win-x86

    1.下载jar包 RXTXcomm.jar 2.实现代码 package main; import java.awt.*; import java.awt.event.*; import java.i ...

  8. SVG学习之stroke-dasharray 和 stroke-dashoffset 详解

    本文适合对SVG已经有所了解,但是对stoke-dasharray和stroke-dashoffset用法有疑问的童鞋 第一:概念解释 1. stroke意思是:画短线于,在...上划线 2. str ...

  9. ASP.NET---如何使用web api创建web服务

    1 首先创建asp.net web空项目,并且创建模拟数据,我在工程下面创建了一个Models文件夹,在文件夹Nodels下面创建类Product和Repository 具体如下: [Serializ ...

  10. jEasyUI 菜单与按钮

    jQuery EasyUI 菜单与按钮 – 创建简单的菜单 <div id="mm" class="easyui-menu" style="wi ...