好思路,好思路。。。


思路:前缀异或差分

提交:1次

题解:区间修改,单点查询,树状数组,如思路$qwq$

#include<cstdio>
#include<iostream>
using namespace std;
#define R register int
#define ull unsigned long long
#define ll long long
#define pause (for(R i=1;i<=10000000000;++i))
#define In freopen("NOIPAK++.in","r",stdin)
#define Out freopen("out.out","w",stdout)
namespace Fread {
static char B[<<],*S=B,*D=B;
#ifndef JACK
#define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
#endif
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
if(ch==EOF) return EOF; do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
} inline bool isempty(const char& ch) {return (ch<=||ch>=);}
inline void gs(char* s) {
register char ch; while(isempty(ch=getchar()));
do *s++=ch; while(!isempty(ch=getchar()));
}
} using Fread::g; using Fread::gs; namespace Luitaryi {
const int N=;
int n,m;
int c[N];
inline int lbt(int x) {return x&-x;}
inline void add(int pos) {for(;pos<=n;pos+=lbt(pos)) c[pos]^=;}
inline int query(int pos) { R ret=;
for(;pos;pos-=lbt(pos)) ret^=c[pos]; return ret;
}
inline void main() {
n=g(),m=g();
while(m--) {
R op=g(),l,r; if(op&) l=g(),r=g(),add(l),add(r+);
else l=g(),printf("%d\n",query(l));
}
}
}
signed main() {
Luitaryi::main();
return ;
}

2019.07.17

P5057 [CQOI2006]简单题 前缀异或差分/树状数组的更多相关文章

  1. BZOJ_2683_简单题&&BZOJ_1176_[Balkan2007]Mokia_CDQ分治+树状数组

    BZOJ_2683_简单题&&BZOJ_1176_[Balkan2007]Mokia_CDQ分治+树状数组 Description 维护一个W*W的矩阵,初始值均为S.每次操作可以增加 ...

  2. [POJ3468]关于整数的简单题 (你想要的)树状数组区间修改区间查询

    #include <cstdio> #include <algorithm> #include <cstring> #include <cctype> ...

  3. 洛谷 P5057 [CQOI2006]简单题 题解

    P5057 [CQOI2006]简单题 题目描述 有一个 n 个元素的数组,每个元素初始均为 0.有 m 条指令,要么让其中一段连续序列数字反转--0 变 1,1 变 0(操作 1),要么询问某个元素 ...

  4. gym102220H 差分+树状数组(区间修改和输出)

    这题目很有意思,让我学会了树状数组的差分,更加深刻理解了树状数组 树状数组的差分写法 void add(int x,int k) { for (int i = x;i <= n;i += low ...

  5. 差分+树状数组【p4868】Preprefix sum

    Description 前缀和(prefix sum)\(S_i=\sum_{k=1}^i a_i\). 前前缀和(preprefix sum) 则把\(S_i\)作为原序列再进行前缀和.记再次求得前 ...

  6. 差分+树状数组 线段树【P2357】 守墓人

    题目描述-->p2357 守墓人 敲了一遍线段树,水过. 树状数组分析 主要思路: 差分 简单介绍一下差分(详细概念太麻烦,看下面. 给定一个数组 7 8 6 5 1 8 18 20 35 // ...

  7. 洛谷 P5057 [CQOI2006]简单题(树状数组)

    嗯... 题目链接:https://www.luogu.org/problem/P5057 首先发现这道题中只有0和1,所以肯定与二进制有关.然后发现这道题需要支持区间更改和单点查询操作,所以首先想到 ...

  8. 洛谷 P5057 [CQOI2006]简单题 (树状数组,位运算)

    题意:有一个长度为\(n\)的数组,进行\(m\)次操作,每次读入一个值\(t\),如果\(t=1\),则将区间\([l,r]\)的数字反转,若\(t=2\),则查询下标为\(i\)的值. 题解:树状 ...

  9. [洛谷P5057][CQOI2006]简单题

    题目大意:有一个长度为$n$的$01$串,两个操作: $1\;l\;r:$把区间$[l,r]$翻转($0->1,1->0$) $2\;p:$求第$p$位是什么 题解:维护前缀异或和,树状数 ...

随机推荐

  1. HDU 4578 线段树玄学算法?

    Transformation 题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4578 Problem Description Yuanfang is p ...

  2. 【模板】C++高精度加法

    所谓高精度加法就是对两个和可能会超过long long数据范围的数进行加法运算.这种情况下,显然不能使用常规的方法进行运算. 那么,不妨考虑一下人在纸上是如何进行加法运算的.当人进行加法运算时,通常会 ...

  3. 整体二分(模板二)动态区间第K大

    这才是更一般的二分写法--HDU5412 #define IOS ios_base::sync_with_stdio(0); cin.tie(0); #include <cstdio>// ...

  4. 计算机网络(TCP/IP)

    概述:网络协议通常分不同的层次进行开发,每一层分别不同的通信功能.TCP/IP通常分为4层协议系统. 1.链路层,有时也称为数据链路层或者网络接口层,通常包括操作系统中的设备驱动程序和计算机中对应的网 ...

  5. Maven学习存档(3)——eclipse集成maven

    一.安装Maven插件 在eclipse的菜单中选择Help——Install New Software 在弹出框的Work with中写入插件安装地址:http://m2eclipse.sonaty ...

  6. Winform界面GridView中XCDataGridViewCheckBoxAllColumn改变触发事件

    1.首先利用CurrentCellDirtyStateChanged事件 监测状态改变后判断是否有未提交的更改,若有则提交 private void CurrentCellDirtyStateChan ...

  7. SP338ROADS题解--最短路变式

    题目链接 https://www.luogu.org/problemnew/show/SP338 分析 联想到不久前做过的一道题\(Full\) \(Tank\),感觉可以用优先队列做,于是写了\(d ...

  8. 【QT学习笔记】二、信号槽和自定义信号槽

    1. 信号槽 int main(int argc, char *argv[]) { QApplication app(argc, argv); QPushButton button("Qui ...

  9. split分离特殊字符

    Invalid escape sequence (valid ones are  \b  \t  \n  \f  \r  \"  \'  \\ ) \b  \t  \n  \f  \r  \ ...

  10. gulp die('click').live('click' composer

    gulp  die('click').live('click' composer packagist.org https://getcomposer.org/ 下载后 php composer.pha ...