题目传送门

  快速的传送门

  慢速的传送门

题目大意

  给定一棵无根树,每个点可以染成黑色或者白色,第$i$叶节点到根的路径上最后有颜色的点必须为$c_{i}$(叶节点可以染色)。问最少要染颜色的点的个数。

  假设有根。显然动态规划。用$f[i][0 / 1]$表示考虑到$i$号点的颜色染成什么,它子树内的点最少要染多少个。

  这里考虑使染色的深度尽量小(相当于钦定根节点染色,没有影响的),方便转移。枚举根节点染什么颜色。如果子树的根的颜色和它一样,那个点就没必要染色了。

  于是愉快地解决了有根的时候。

  对于无根的时候可以枚举根,记录转移的前缀和可以快速通过一条边转移根并计算上面的动态规划值。

  其实根本没必要枚举根。

  因为根在哪最有答案不会改变。

  你可以考虑根所在的一条链。动态规划的某个方案都会钦定每个点都染成某个颜色。

  无论根在哪,一段连续染成相同颜色的点都可以只保留最浅的一个点的染色。

  所以直接找非叶节点动态规划。

Code

 /**
* bzoj
* Problem#1304
* Accepted
* Time: 48ms
* Memory: 1600k
*/
#include <bits/stdc++.h>
using namespace std; const int N = 1e4 + ; int m ,n;
int col[N];
int f[N][];
vector<int> g[N]; inline void init() {
scanf("%d%d", &m, &n);
for (int i = ; i <= n; i++)
scanf("%d", col + i);
for (int i = , u, v; i < m; i++) {
scanf("%d%d", &u, &v);
g[u].push_back(v);
g[v].push_back(u);
}
} void dfs(int p, int fa) {
if (p <= n) {
f[p][col[p]] = ;
f[p][col[p] ^ ] = ;
return ;
}
f[p][] = f[p][] = ;
for (int i = ; i < (signed) g[p].size(); i++) {
int e = g[p][i];
if (e == fa) continue;
dfs(e, p);
f[p][] += min(f[e][] - , f[e][]);
f[p][] += min(f[e][] - , f[e][]);
}
} inline void solve() {
dfs(m, );
printf("%d\n", min(f[m][], f[m][]));
} int main() {
init();
solve();
return ;
}

bzoj 1304 [CQOI 2009] 叶子的染色 - 动态规划的更多相关文章

  1. BZOJ 1304: [CQOI2009]叶子的染色

    1304: [CQOI2009]叶子的染色 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 566  Solved: 358[Submit][Statu ...

  2. 【BZOJ1304】[CQOI2009]叶子的染色(动态规划)

    [BZOJ1304][CQOI2009]叶子的染色(动态规划) 题面 BZOJ 洛谷 题解 很简单. 设\(f[i][0/1/2]\)表示以\(i\)为根的子树中,还有颜色为\(0/1/2\)(\(2 ...

  3. BZOJ1304 CQOI2009 叶子的染色 【树形DP】

    BZOJ1304 CQOI2009 叶子的染色 Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方 ...

  4. CQOI2009叶子的染色

    叶子的染色 题目描述 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含一 ...

  5. 洛谷 P3155 [CQOI2009]叶子的染色 解题报告

    P3155 [CQOI2009]叶子的染色 题目描述 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到 ...

  6. [BZOJ 1879][SDOI 2009]Bill的挑战 题解(状压DP)

    [BZOJ 1879][SDOI 2009]Bill的挑战 Description Solution 1.考虑状压的方式. 方案1:如果我们把每一个字符串压起来,用一个布尔数组表示与每一个字母的匹配关 ...

  7. P3155 [CQOI2009]叶子的染色

    P3155 [CQOI2009]叶子的染色 题目描述 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到 ...

  8. BZOJ_1304_[CQOI2009]叶子的染色_树形DP

    BZOJ_1304_[CQOI2009]叶子的染色_树形DP Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白 ...

  9. [BZOJ 1563] [NOI 2009] 诗人小G(决策单调性)

    [BZOJ 1563] [NOI 2009] 诗人小G(决策单调性) 题面 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并放在一行中,注意一行中可以放的句子数目是没有限制的.小 G ...

随机推荐

  1. 从零开始一起学习SLAM | 学习SLAM到底需要学什么?

    SLAM涉及的知识面很广,我简单总结了 “SLAM知识树” 如下所示: (公众号菜单栏回复 “树” 可获得清晰版) 可以看到涉及的知识面还是比较广的.这里放出一张SLAM圈子里喜闻乐见的表达悲喜交加心 ...

  2. 24.form表单提交的六种方式

    form表单提交方式 1.无刷新页面提交表单 表单可实现无刷新页面提交,无需页面跳转,如下,通过一个隐藏的iframe实现,form表单的target设置为iframe的name名称,form提交目标 ...

  3. React创建组件的不同方式(ES5 & ES6)

    一. 首先缕清楚React.createElement.React.createClass.React.Component之间的关系 1. React.createElement(HTML eleme ...

  4. SQL Server数据库(时间戳timestamp)类型

    1.公开数据库中自动生成的唯一二进制数字的数据类型. 2.timestamp 通常用作给表行加版本戳的机制. 3.存储大小为 8 个字节. 不可为空的 timestamp 列在语义上等价于 binar ...

  5. 执行字符串或注释代码段的方法(eval、exec、execfile)

    eval:计算字符串中的表达式exec:执行字符串中的语句execfile:用来执行一个文件 需注意的是,exec是一个语句,而eval()和execfile()则是内建built-in函数. 1 2 ...

  6. [4]Windows内核情景分析---内核对象

    写过Windows应用程序的朋友都常常听说"内核对象"."句柄"等术语却无从得知他们的内核实现到底是怎样的, 本篇文章就揭开这些技术的神秘面纱. 常见的内核对象 ...

  7. kali linux主题下载

    主题下载网站 https://www.gnome-look.org/ 下载好安装包后解压 将文件夹移动到 usr/share/theme/ 下 mv download ../usr/share/the ...

  8. poj2987 求最大权闭合回路

    建图差不多和以前做的差不多,就是最后询问这个闭合子图有多少个的时候,只要输出这个图的S集合,就是进行dfs能遍历到的点一定在S集合中,不能遍历到的点在T集合中 #include <iostrea ...

  9. SQL query - check latest 3 days failed job.

    select top 100 js.last_run_date ,j.name, js.step_id,js.step_name,js.last_run_date,jsl.log,jh.message ...

  10. RabbitMQ CentOS6.5 安装

    1.安装前准备工作 1)安装RbbitMQ之前先安装ErLang 2)安装ErLang之前需要安装最新的socat 3)安装方式有多种,可以下包安装,可以直接下载rpm文件安装,推荐前者. 4)安装的 ...