题意:

给出n条线段两个端点的坐标,问所有线段投影到一条直线上,如果这些所有投影至少相交于一点就输出Yes!,否则输出No!。

思路:

计算几何。这道题要思考到两点:

1:把问题转化为是否存在一条直线与每条线段都有交点。证明:若存在一条直线l和所有线段相交,作一条直线m和l垂直,则m就是题中要求的直线,所有线段投影的一个公共点即为垂足。

2:枚举两两线段的各一个端点,连一条直线,再判断剩下的线段是否都和这条直线有交点。证明:若有l和所有线段相交,则可保持l和所有线段相交,左右平移l到和某一线段交于端点停止(“移不动了”)。然后绕这个交点旋转。也是转到“转不动了”(和另一线段交于其一个端点)为止。这样就找到了一个新的l满足题意,而且经过其中两线段的端点。

判断线段与直线l是否相交的方法:

1:利用叉积的性质,判断线段的两个端点是否在直线的两边。

2:求线段所在的直线tmp,求tmp与l的交点p,由线段两端点到p的距离之和,与线段的距离比较,若相等则证明线段与直线相交。

代码:

#include<iostream>
#include<cmath>
using namespace std;
const int maxn = ;
const double eps = 1e-;
int n; struct Point
{
double x, y;
}s[maxn], e[maxn]; double mult(Point sp, Point ep, Point op)
{
return (sp.x-op.x)*(ep.y-op.y) - (ep.x-op.x)*(sp.y-op.y);
} bool findd(Point p1, Point p2)
{
if(abs(p1.x-p2.x) < eps && abs(p1.y-p2.y) < eps)
return false;
for(int i = ; i < n; i ++)
if(mult(p1, p2, s[i])*mult(p1, p2, e[i]) > eps) return false;
return true;
} int main()
{
int t, i, j;
cin >> t;
while(t --)
{
cin >> n;
for(i = ; i < n; i ++)
cin >> s[i].x >> s[i].y >> e[i].x >> e[i].y;
bool flag = false;
if(n < ) flag = true;
for(i = ; i < n && !flag; i ++)
for(j = i + ; j < n && !flag; j ++) // 枚举线段的端点。
{
if(findd(s[i], s[j])) flag = true;
else if(findd(s[i], e[j])) flag = true;
else if(findd(e[i], s[j])) flag = true;
else if(findd(e[i], e[j])) flag = true;
}
if(flag) cout << "Yes!" << endl;
else cout << "No!" << endl;
}
return ;
}

POJ3304 Segments 【线段直线相交】的更多相关文章

  1. POJ 3304 Segments (直线和线段相交判断)

    Segments Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7739   Accepted: 2316 Descript ...

  2. POJ 3304 Segments 判断直线和线段相交

    POJ 3304  Segments 题意:给定n(n<=100)条线段,问你是否存在这样的一条直线,使得所有线段投影下去后,至少都有一个交点. 思路:对于投影在所求直线上面的相交阴影,我们可以 ...

  3. POJ 3304 Segments (判断直线与线段相交)

    题目链接:POJ 3304 Problem Description Given n segments in the two dimensional space, write a program, wh ...

  4. POJ 3304 Segments(判断直线与线段是否相交)

    题目传送门:POJ 3304 Segments Description Given n segments in the two dimensional space, write a program, ...

  5. Segments POJ 3304 直线与线段是否相交

    题目大意:给出n条线段,问是否存在一条直线,使得n条线段在直线上的投影有至少一个公共点. 题目思路:如果假设成立,那么作该直线的垂线l,该垂线l与所有线段相交,且交点可为线段中的某两个交点 证明:若有 ...

  6. poj 3304线段与直线相交

    http://poj.org/problem?id=3304 Segments Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: ...

  7. 判断线段和直线相交 POJ 3304

    // 判断线段和直线相交 POJ 3304 // 思路: // 如果存在一条直线和所有线段相交,那么平移该直线一定可以经过线段上任意两个点,并且和所有线段相交. #include <cstdio ...

  8. POJ 1039 Pipe【经典线段与直线相交】

    链接: http://poj.org/problem?id=1039 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  9. URAL 1966 Cycling Roads 点在线段上、线段是否相交、并查集

    F - Cycling Roads     Description When Vova was in Shenzhen, he rented a bike and spent most of the ...

随机推荐

  1. PostgreSQL字段类型说明

    BIGSERIALSERIAL8 存储自动递增的惟一整数,最多 8 字节. BIT 固定长度的位串. BIT VARYING(n)VARBIT(n) 可变长度的位串,长度为 n 位. BOOLEAN  ...

  2. 画caffe训练loss曲线

    Linux下操作 1. 将loss值存储到lossInf.txt中 fName1='loss.txt' cat loss.log | grep "solver.cpp:218] Iterat ...

  3. BZOJ4723[POI2017]Flappy Bird——模拟

    题目描述 <飞扬的小鸟>是一款风靡的小游戏.在游戏中,小鸟一开始位于(0,0)处,它的目标是飞到横坐标为X的某个位置 上.每一秒,你可以选择点击屏幕,那么小鸟会从(x,y)飞到(x+1,y ...

  4. 洛谷 P2420 让我们异或吧 解题报告

    P2420 让我们异或吧 题目描述 异或是一种神奇的运算,大部分人把它总结成不进位加法. 在生活中-xor运算也很常见.比如,对于一个问题的回答,是为1,否为0.那么: (A是否是男生 )xor( B ...

  5. 洛谷 P2515 [HAOI2010]软件安装 解题报告

    P2515 [HAOI2010]软件安装 题目描述 现在我们的手头有\(N\)个软件,对于一个软件\(i\),它要占用\(W_i\)的磁盘空间,它的价值为\(V_i\).我们希望从中选择一些软件安装到 ...

  6. [转载]Best Practices for Speeding Up Your Web Site

    原文:http://developer.yahoo.com/performance/rules.html 提升网站加载速度的一些优化技巧,大部分在前端层面. 不知道是多久以前写的,看起来有些已经过时了 ...

  7. android sqlite批量插入数据速度解决方案

    转自 http://hi.baidu.com/hfutonline/blog/item/62b1e4de8bdf4b2e5882dd28.html 最近在做android项目的时候遇到一个问题,应用程 ...

  8. Ubuntu中让归档管理器支持rar和7z格式

    由于版权等原因,Linux系统不能直接支持rar和7z,需要手动安装第三方工具. rar支持 sudo apt install unrar 7z支持 sudo apt install p7zip-fu ...

  9. css实现单选效果,看看有趣的tabIndex

    以前我实现单选变色几乎都是用js实现的,今天看到有个css属性可以直接实现单选变色,很开心啊~ 话不多说看效果 实现的代码如下 下面我们看看用focus实现别的有趣的效果 话不多说看效果 实现的代码如 ...

  10. 最短路算法模板--SPFA

    初见SPFA时,直接认成了优先队列优化的Dijkstra,经过几位大佬的指点,我终于明白了他们的差异. Dijkstra是保证已经出队过的点不再入队,SPFA是已经在队列中不再入队.比较起来,SPFA ...