CH 2101 - 可达性统计 - [BFS拓扑排序+bitset状压]
题目链接:传送门
描述
给定一张N个点M条边的有向无环图,分别统计从每个点出发能够到达的点的数量。N,M≤30000。
输入格式
第一行两个整数N,M,接下来M行每行两个整数x,y,表示从x到y的一条有向边。
输出格式
共N行,表示每个点能够到达的点的数量。
样例输入
10 10
3 8
2 3
2 5
5 9
5 9
2 3
3 9
4 8
2 10
4 9
样例输出
1
6
3
3
2
1
1
1
1
1
题解:
首先,如果用 $f(x)$ 代表从点 $x$ 出发所能到达的所有点的集合,应有如下公式:
$f(x) = {x} \cup (\bigcup_{edge(x,y)}f(y))$
也就是说我们可以通过某种递推方式,递推出所有点的 $f(x)$。
由此想到有向无环图的拓扑序(对于图中任意一条有向边 $(x,y)$,在该序列中 $x$ 都出现在 $y$ 之前),对有向无环图的拓扑序逆向遍历计算,正好可以正确求出每个点的 $f(x)$。
另外, 我们还可以用状压的方式来存储 $f(x)$,也比较方便转移和存储,这里我们用bitset容器来做状压。
关于bitset:
bitset<> num; 相当于定义了一个1000位的二进制数,其 $1$ 位占用 $1$ 个bit,也就是说 $8$ 位占用一个Byte。
由于估计时间复杂度是我们一般以 $32$ 位整数的运算次数为基准,因此 $n$ 位的bitset执行一次位运算的时间复杂度可以视作 $n/32$。
bitset支持的位运算有按位取反“~”、按位与“&”、按位或“|”、按位异或“^”、左移“<<”、右移“>>”(均用 $0$ 填充),还可以比较是否相等“==”和“!=”。
bitset支持 num[k] 这种形式进行取值或者赋值。根据上面的定义,范围为 num[] 到 num[] 。
bitset还支持:set()全部置 $1$、reset()全部置 $0$、count()统计 $1$ 的数目、any()查询是否存在 $1$、none()查询是否没有 $1$。
AC代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn=+;
int n,m;
int indg[maxn];
vector<int> e[maxn];
bitset<maxn> f[maxn]; vector<int> topo;
void TopoSort()
{
topo.clear();
queue<int> Q;
for(int i=;i<=n;i++) if(indg[i]==) Q.push(i);
while(Q.size())
{
int u=Q.front(); Q.pop();
topo.push_back(u);
for(auto v:e[u]) if(--indg[v]==) Q.push(v);
}
} int main()
{
ios::sync_with_stdio();
cin.tie(), cout.tie(); cin>>n>>m;
memset(indg,,sizeof(indg));
for(int i=,x,y;i<=m;i++) cin>>x>>y, indg[y]++, e[x].push_back(y); TopoSort();
for(int i=topo.size()-;i>=;i--)
{
int x=topo[i];
f[x].reset(), f[x][x]=;
for(auto y:e[x]) f[x]|=f[y];
}
for(int i=;i<=n;i++) cout<<f[i].count()<<endl;
}
CH 2101 - 可达性统计 - [BFS拓扑排序+bitset状压]的更多相关文章
- 2101 可达性统计(拓扑排序/dfs+状态压缩)
[题目描述] 给定一张N个点M条边的有向无环图,分别统计从每个点出发能够到达的点的数量.N,M≤30000. [题目链接] 2101 可达性统计 [算法] 拓扑排序之后逆序计算(感觉dfs更好写而且应 ...
- 牛客 51011 可达性统计(拓扑排序,bitset)
牛客 51011 可达性统计(拓扑排序,bitset) 题意: 给一个 n个点,m条边的有向无环图,分别统计每个点出发能够到达的点的数量(包括自身) \(n,m\le30000\). 样例: 10 1 ...
- AcWing:164. 可达性统计(拓扑排序 + 状态压缩算法)
给定一张N个点M条边的有向无环图,分别统计从每个点出发能够到达的点的数量. 输入格式 第一行两个整数N,M,接下来M行每行两个整数x,y,表示从x到y的一条有向边. 输出格式 输出共N行,表示每个点能 ...
- [LOJ 3101] [Luogu 5332] [JSOI2019]精准预测(2-SAT+拓扑排序+bitset)
[LOJ 3101] [Luogu 5332] [JSOI2019]精准预测(2-SAT+拓扑排序+bitset) 题面 题面较长,略 分析 首先,发现火星人只有死和活两种状态,考虑2-SAT 建图 ...
- [BZOJ4484][JSOI2015]最小表示[拓扑排序+bitset]
题意 给你一个 \(n\) 个点 \(m\) 条边的 \(\rm DAG\) ,询问最多能够删除多少条边,使得图的连通性不变 \(n\leq 3\times 10^4\ ,m\leq 10^5\) . ...
- NOIP 车站分级 (luogu 1983 & codevs 3294 & vijos 1851) - 拓扑排序 - bitset
描述 一条单向的铁路线上,依次有编号为 1, 2, ..., n 的 n 个火车站.每个火车站都有一个级别,最低为 1 级.现有若干趟车次在这条线路上行驶,每一趟都满足如下要求:如果这趟车次停靠了火车 ...
- BZOJ4484 JSOI2015最小表示(拓扑排序+bitset)
考虑在每个点的出边中删除哪些.如果其出边所指向的点中存在某点能到达另一点,那么显然指向被到达点的边是没有用的.于是拓扑排序逆序处理,按拓扑序枚举出边,bitset维护可达点集合即可. #include ...
- C. Journey bfs 拓扑排序+dp
C. Journey 补今天早训 这个是一个dp,开始我以为是一个图论,然后就写了一个dij和网络流,然后mle了,不过我觉得如果空间开的足够的,应该也是可以过的. 然后看了题解说是一个dp,这个dp ...
- uvaLA4255 Guess BFS+拓扑排序
算法指南白书 思路:“连续和转化成前缀和之差” #include <stdio.h> #include <string.h> #include <iostream> ...
随机推荐
- Djnogo Web开发学习笔记(2)
安 装 截止目前,https://www.djangoproject.com/download/提供的最新的Django的下载版本为1.6.4. Install Django You’ve got ...
- python下申明式的对象关系DB映射器--Pony
之前看到了Sails.js的waterline提供了声明式的关系型对象与DB的映射器,惊为天人,可以说是极大地提升了效率. 利用waterline的对象关系模型,用户可以直接使用javascript语 ...
- Winform开发框架之通用Windows摄像头调用拍照--SNF快速开发平台3.3-Spring.Net.Framework
今天做了一个windows系统下调用摄像头.进行开启.关闭.拍照.设置等等功能演示. 进行源码贡献,欢迎大家下载使用 一.DEMO效果如下: 二.DEMO演示代码如下: using SNF.Utili ...
- css min-width和max-width
min-width: 浏览器缩小设置min-width,元素最小也是min-width设置的值.设置min-width元素不会压扁. max-width:元素最大宽度
- 【Tomcat】Tomcat 系统架构与设计模式,第 2 部分: 设计模式分析
这个分为两个部分的系列文章研究了 Apache Tomcat 服务器的系统架构以及其运用的很多经典设计模式.第 1 部分 分析了 Tomcat 的工作原理,第 2 部分将分析 Tomcat 中运用的许 ...
- js的new Date()日期的使用
<script type="text/javascript"> //js获取某个月的天数 function days(year,month){ var dayCount ...
- Oracle分割字符串 REGEXP_SUBSTR用法
分割字符串中所有指定字符,然后成多行参数说明,参数1: 待分割字符串参数2:正则表达式参数3:起始位置,从第几个字符开始正则表达式匹配(默认为1)参数4:标识第几个匹配组,默认为1参数5:模式('i' ...
- Java编程的逻辑 (78) - 线程池
本系列文章经补充和完善,已修订整理成书<Java编程的逻辑>,由机械工业出版社华章分社出版,于2018年1月上市热销,读者好评如潮!各大网店和书店有售,欢迎购买,京东自营链接:http: ...
- Java知多少(80)图形界面设计基础
早先程序使用最简单的输入输出方式,用户在键盘输入数据,程序将信息输出在屏幕上.现代程序要求使用图形用户界面(Graphical User Interface,GUI),界面中有菜单.按钮等,用户通过鼠 ...
- 一个Login页面全面了解session与cookie
背景 做了四年的前端开发,对外一直说自己是web开发,那么身为一个web开发怎能不知道session与cookie以及其管理方式呢~ Login涉及技术栈:Nodejs,MongoDB,Express ...