Flink - CoGroup
使用方式,
dataStream.coGroup(otherStream)
.where(0).equalTo(1)
.window(TumblingEventTimeWindows.of(Time.seconds(3)))
.apply (new CoGroupFunction () {...});
可以看到coGroup只是产生CoGroupedStreams
public <T2> CoGroupedStreams<T, T2> coGroup(DataStream<T2> otherStream) {
return new CoGroupedStreams<>(this, otherStream);
}
而where, equalTo只是添加keySelector,对于两个流需要分别指定
keySelector1,keySelector2
window设置双流的窗口,很容易理解
apply,
/**
* Completes the co-group operation with the user function that is executed
* for windowed groups.
*
* <p>Note: This method's return type does not support setting an operator-specific parallelism.
* Due to binary backwards compatibility, this cannot be altered. Use the
* {@link #with(CoGroupFunction, TypeInformation)} method to set an operator-specific parallelism.
*/
public <T> DataStream<T> apply(CoGroupFunction<T1, T2, T> function, TypeInformation<T> resultType) {
//clean the closure
function = input1.getExecutionEnvironment().clean(function); UnionTypeInfo<T1, T2> unionType = new UnionTypeInfo<>(input1.getType(), input2.getType());
UnionKeySelector<T1, T2, KEY> unionKeySelector = new UnionKeySelector<>(keySelector1, keySelector2); DataStream<TaggedUnion<T1, T2>> taggedInput1 = input1 //将input1封装成TaggedUnion,很简单,就是赋值到one上
.map(new Input1Tagger<T1, T2>())
.setParallelism(input1.getParallelism())
.returns(unionType);
DataStream<TaggedUnion<T1, T2>> taggedInput2 = input2 //将input2封装成TaggedUnion
.map(new Input2Tagger<T1, T2>())
.setParallelism(input2.getParallelism())
.returns(unionType); DataStream<TaggedUnion<T1, T2>> unionStream = taggedInput1.union(taggedInput2); //由于现在双流都是TaggedUnion类型,union成一个流,问题被简化 // we explicitly create the keyed stream to manually pass the key type information in
WindowedStream<TaggedUnion<T1, T2>, KEY, W> windowOp = //创建窗口
new KeyedStream<TaggedUnion<T1, T2>, KEY>(unionStream, unionKeySelector, keyType)
.window(windowAssigner); if (trigger != null) { //如果有trigger,evictor,设置上
windowOp.trigger(trigger);
}
if (evictor != null) {
windowOp.evictor(evictor);
} return windowOp.apply(new CoGroupWindowFunction<T1, T2, T, KEY, W>(function), resultType); //调用window的apply
}
关键理解,他要把两个流变成一个流,这样问题域就变得很简单了
最终调用到WindowedStream的apply,apply是需要保留window里面的所有原始数据的,和reduce不一样
apply的逻辑,是CoGroupWindowFunction
private static class CoGroupWindowFunction<T1, T2, T, KEY, W extends Window>
extends WrappingFunction<CoGroupFunction<T1, T2, T>>
implements WindowFunction<TaggedUnion<T1, T2>, T, KEY, W> { private static final long serialVersionUID = 1L; public CoGroupWindowFunction(CoGroupFunction<T1, T2, T> userFunction) {
super(userFunction);
} @Override
public void apply(KEY key,
W window,
Iterable<TaggedUnion<T1, T2>> values,
Collector<T> out) throws Exception { List<T1> oneValues = new ArrayList<>();
List<T2> twoValues = new ArrayList<>(); for (TaggedUnion<T1, T2> val: values) {
if (val.isOne()) {
oneValues.add(val.getOne());
} else {
twoValues.add(val.getTwo());
}
}
wrappedFunction.coGroup(oneValues, twoValues, out);
}
}
}
逻辑也非常的简单,就是将该key所在window里面的value,放到oneValues, twoValues两个列表中
最终调用到用户定义的wrappedFunction.coGroup
DataStream.join就是用CoGroup实现的
return input1.coGroup(input2)
.where(keySelector1)
.equalTo(keySelector2)
.window(windowAssigner)
.trigger(trigger)
.evictor(evictor)
.apply(new FlatJoinCoGroupFunction<>(function), resultType);
FlatJoinCoGroupFunction
private static class FlatJoinCoGroupFunction<T1, T2, T>
extends WrappingFunction<FlatJoinFunction<T1, T2, T>>
implements CoGroupFunction<T1, T2, T> {
private static final long serialVersionUID = 1L; public FlatJoinCoGroupFunction(FlatJoinFunction<T1, T2, T> wrappedFunction) {
super(wrappedFunction);
} @Override
public void coGroup(Iterable<T1> first, Iterable<T2> second, Collector<T> out) throws Exception {
for (T1 val1: first) {
for (T2 val2: second) {
wrappedFunction.join(val1, val2, out);
}
}
}
}
可以看出当前join是inner join,必须first和second都有的情况下,才会调到用户的join函数
Flink - CoGroup的更多相关文章
- Alink漫谈(十六) :Word2Vec源码分析 之 建立霍夫曼树
Alink漫谈(十六) :Word2Vec源码分析 之 建立霍夫曼树 目录 Alink漫谈(十六) :Word2Vec源码分析 之 建立霍夫曼树 0x00 摘要 0x01 背景概念 1.1 词向量基础 ...
- Flink学习笔记:Operators之CoGroup及Join操作
本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKhaz ...
- Flink入门 - CoGroup和Join
/* *CoGroup */ final StreamExecutionEnvironment streamExecutionEnvironment = StreamExecutionEnvironm ...
- Flink实例(五十): Operators(十)多流转换算子(五)coGroup 与union
参考链接:https://mp.weixin.qq.com/s/BOCFavYgvNPSXSRpBMQzBw 需求场景分析 需求场景 需求诱诱诱来了...数据产品妹妹想要统计单个短视频粒度的「点赞,播 ...
- Flink Program Guide (2) -- 综述 (DataStream API编程指导 -- For Java)
v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VM ...
- Flink Program Guide (1) -- 基本API概念(Basic API Concepts -- For Java)
false false false false EN-US ZH-CN X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-n ...
- Flink从入门到放弃(入门篇3)-DataSetAPI
戳更多文章: 1-Flink入门 2-本地环境搭建&构建第一个Flink应用 3-DataSet API 4-DataSteam API 5-集群部署 6-分布式缓存 7-重启策略 8-Fli ...
- Flink Java Demo(Windows)
关于Flink相关的概念性东西就不说了,网上都有,官网也很详尽.本文主要记录一下Java使用Flink的简单例子. 首先,去官网下载Flink的zip包(链接就不提供了,你已经是个成熟的程序员了,该有 ...
- Flink官网文档翻译
http://ifeve.com/flink-quick-start/ http://vinoyang.com/2016/05/02/flink-concepts/ http://wuchong.me ...
随机推荐
- 物联网架构成长之路(5)-EMQ插件配置
1. 前言 上一小结说了插件的创建,这一节主要怎么编写代码,以及具体流程之类的.2. 增加一句Hello World 修改 ./deps/emq_plugin_wunaozai/src/emq_plu ...
- vue使用node的入门
1.安装cnpm npm install -g cnpm --registry=https://registry.npm.taobao.org 验证是否安装 cnpm -v 2.安装vue cnpm ...
- Java知多少(99)Graphics2D类的绘图方法
Java语言在Graphics类提供绘制各种基本的几何图形的基础上,扩展Graphics类提供一个Graphics2D类,它拥用更强大的二维图形处理能力,提供.坐标转换.颜色管理以及文字布局等更精确的 ...
- Intellij IDEA 2015 导入MyEClipse工程
一.步骤说明 File->New->Projet from existing sources,选择要导入的项目,并且导入项目; 打开 “open module settings”进行设置: ...
- #Java学习之路——基础阶段二(第十篇)
我的学习阶段是跟着CZBK黑马的双源课程,学习目标以及博客是为了审查自己的学习情况,毕竟看一遍,敲一遍,和自己归纳总结一遍有着很大的区别,在此期间我会参杂Java疯狂讲义(第四版)里面的内容. 前言: ...
- oracle表空间不足扩容的方法
1.查询当前用户的所属表空间 select * from user_users; 2.增加表空间有两种方法: 以sysdba登陆进数据库 语法: alter tablespace 表空间名称 add ...
- [Model] GoogLeNet
主要就是对Inception Module的理解 网络结构分析 没有densy layer竟然,这是给手机上运行做铺垫么. 一个新型的模块设计: [不同类型的layer并行放在了一起] 最初的设计: ...
- akka cluster 初体验
cluster 配置 akka { actor { provider = "akka.cluster.ClusterActorRefProvider" } remote { log ...
- Nginx-设定允许的ip和要拒绝的ip
作用范围和配置的顺序有关系,先配置的优先级高,会覆盖和后一个配置重合的部分, 可以添加多个allow和多个deny: 1)这个配置127.0.0.1可以通过访问. allow 127.0.0.1; d ...
- [APUE]进程控制(下)
一.更改用户ID和组ID 可以用setuid设置实际用户ID和有效用户ID.可以用setgid函数设置实际组ID和有效组ID. #include <sys/types.h> #includ ...