The Shortest Path in Nya Graph

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 13445    Accepted Submission(s): 2856

 

Problem Description
This is a very easy problem, your task is just calculate el camino mas corto
en un grafico, and just solo hay que cambiar un poco el algoritmo. If you do
not understand a word of this paragraph, just move on.
The Nya graph is an undirected graph with "layers". Each node in the graph
belongs to a layer, there are N nodes in total.
You can move from any node in layer x to any node in layer x + 1, with cost
C, since the roads are bi-directional, moving from layer x + 1 to layer x is
also allowed with the same cost.
Besides, there are M extra edges, each connecting a pair of node u and v,
with cost w.
Help us calculate the shortest path from node 1 to node N.
 

 

Input
The first line has a number T (T <= 20) , indicating the number of test
cases.
For each test case, first line has three numbers N, M (0 <= N, M <= 105)
and C(1 <= C <= 103), which is the number of nodes, the number of
extra edges and cost of moving between adjacent layers.
The second line has N numbers li (1 <= li <= N), which
is the layer of ith node belong to.
Then come N lines each with 3 numbers, u, v (1 <= u, v < =N, u <> v) and w
(1 <= w <= 104), which means there is an extra edge, connecting a
pair of node u and v, with cost w.
 

 

Output
For test case X, output "Case #X: " first, then output the minimum cost
moving from node 1 to node N.
If there are no solutions, output -1.
 

 

Sample Input
 
2 3 3 3 1 3 2 1 2 1 2 3 1 1 3 3 3 3 3 1 3 2 1 2 2 2 3 2 1 3 4
 
 

 

Sample Output
 
Case #1: 2 Case #2: 3
 
 

 

Source
 

 

Recommend
zhuyuanchen520


【题意】

给一张图,n个点,m条有权无向边,每个点属于某一层,相邻层间的任意两点存在一条权值为C的边,问1到n的最短路


【分析】

此图数据量比较大,暴力建图不可取!会MLE or TLE.

可以将层也抽象化成点,也就是一共有N个点节点和N个层节点,然后按照层与层之间(双向,权值C)、点与点之间(即后来给的M条边)、点与相对应的层之间(层指向点,权值0),点与对应层的相邻层之间(点指向层,权值C)建图,最后求最短路即可

解释一个代码中难理解的地方:

这里是点和所在层建立关系
 不能建双向边的原因是假设有两个点在同一层

比如有三个点,点1在第一层,点2也在第一层,虚拟第一层为点4,那么1-4有一条距离为0的点,4-1有一条距离为0的点

2-4有一条距离为0的点,4-2有一条距离为0的点,那么1-2距离就成为0了,这是不对的。

这两个if建立单向边的原因是,如果三层,中间一层没有点,建立双向边会导致最上和最下的两层可以相通,而事实上是不通的


【代码】

#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int N=2e5+5;
#define pir pair<int,int>
int n,m,c,cas,cnt,S,la[N],dis[N];bool has[N];
struct node{int v,w,next;}e[N<<2];int tot,head[N];bool vis[N];
inline void addedge(int x,int y,int z){
e[++tot].v=y;e[tot].w=z;e[tot].next=head[x];head[x]=tot;
}
inline void add(int x,int y,int z){
addedge(x,y,z);
addedge(y,x,z);
}
inline void Clear(){
tot=0;
memset(head,0,sizeof head);
memset(has,0,sizeof has);
memset(vis,0,sizeof vis);
memset(dis,0x3f,sizeof dis);
}
inline void Init(){
scanf("%d%d%d",&n,&m,&c);
for(int i=1;i<=n;i++) scanf("%d",&la[i]),has[la[i]]=1;
for(int i=1,x,y,z;i<=m;i++) scanf("%d%d%d",&x,&y,&z),add(x,y,z);
for(int i=1;i<=n;i++) if(has[i]&&has[i+1]) add(i+n,i+1+n,c);
for(int i=1;i<=n;i++){
addedge(la[i]+n,i,0);
if(la[i]>1) addedge(i,la[i]+n-1,c);
if(la[i]<n) addedge(i,la[i]+n+1,c);
}
}
#define mp make_pair
inline void dijkstra(){
priority_queue<pir,vector<pir>,greater<pir> >q;
q.push(mp(dis[S=1]=0,S));//vis[S]=1;
while(!q.empty()){
pir t=q.top();q.pop();
int x=t.second;
if(vis[x]) continue;
vis[x]=1;
for(int i=head[x];i;i=e[i].next){
int v=e[i].v;
if(!vis[v]&&dis[v]>dis[x]+e[i].w){
q.push(mp(dis[v]=dis[x]+e[i].w,v));
}
}
}
printf("Case #%d: %d\n",++cnt,dis[n]<0x3f3f3f3f?dis[n]:-1);
}
int main(){
for(scanf("%d",&cas);cas--;){
Clear();
Init();
dijkstra();
}
return 0;
}

HDU 4725 The Shortest Path in Nya Graph(构图)的更多相关文章

  1. Hdu 4725 The Shortest Path in Nya Graph (spfa)

    题目链接: Hdu 4725 The Shortest Path in Nya Graph 题目描述: 有n个点,m条边,每经过路i需要wi元.并且每一个点都有自己所在的层.一个点都乡里的层需要花费c ...

  2. HDU 4725 The Shortest Path in Nya Graph [构造 + 最短路]

    HDU - 4725 The Shortest Path in Nya Graph http://acm.hdu.edu.cn/showproblem.php?pid=4725 This is a v ...

  3. HDU 4725 The Shortest Path in Nya Graph

    he Shortest Path in Nya Graph Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged o ...

  4. HDU 4725 The Shortest Path in Nya Graph (最短路)

    The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  5. hdu 4725 The Shortest Path in Nya Graph (最短路+建图)

    The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  6. (中等) HDU 4725 The Shortest Path in Nya Graph,Dijkstra+加点。

    Description This is a very easy problem, your task is just calculate el camino mas corto en un grafi ...

  7. HDU 4725 The Shortest Path in Nya Graph(最短路径)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)

    Description This is a very easy problem, your task is just calculate el camino mas corto en un grafi ...

  8. HDU 4725 The Shortest Path in Nya Graph (最短路 )

    This is a very easy problem, your task is just calculate el camino mas corto en un grafico, and just ...

  9. HDU - 4725 The Shortest Path in Nya Graph 【拆点 + dijkstra】

    This is a very easy problem, your task is just calculate el camino mas corto en un grafico, and just ...

随机推荐

  1. android:应用性能优化SparseArray

    HashMap是java里比较常用的一个集合类,我比较习惯用来缓存一些处理后的结果.最近在做一个Android项目,在代码中定义这样一个变量,实例化时,Eclipse却给出了一个 performanc ...

  2. Javascript:自己写模板引擎

    背景 因为JS没有提供“字符串插入”和“多行字符串”特性,传统的拼凑字符串容易出错.性能不高和不容易理解代码,为了应对这些问题,很多个人和团队开发了模板引擎,现在主流的JS框架几乎都提供此类功能了. ...

  3. windows SVN 服务器搭建

    一.SVN服务器搭建和使用  1.     首先来下载和搭建SVN服务器,下载地址如下: http://subversion.apache.org/packages.html#windows,进入网址 ...

  4. IOPS计算

    Device Type IOPS 7,200 rpm SATA drives HDD ~75-100 IOPS[2] 10,000 rpm SATA drives HDD ~125-150 IOPS[ ...

  5. mysql如何处理亿级数据,第一个阶段——优化SQL语句

    1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描. 2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉 ...

  6. 【转】[Network] 计算机网络基础知识总结

    阅读目录 1. 网络层次划分 2. OSI七层网络模型 3. IP地址 4. 子网掩码及网络划分 5. ARP/RARP协议 6. 路由选择协议 7. TCP/IP协议 8. UDP协议 9. DNS ...

  7. VisualVM、JConsole

    VisualVM.JConsole 需要熟悉JVM内存模型 https://blog.csdn.net/libaolin198706231987/article/details/55057149 ht ...

  8. Android studio ButterKnife插件

    1.功能:给所有的有id的控件添加注解 2.github地址 https://github.com/avast/android-butterknife-zelezny 3.插件下载地址 http:// ...

  9. vue中使用localstorage

    1.store.js(读取写入到localstorage) const STORAGE_KEY="todos-vuejs" export default{ fetch(){ ret ...

  10. 【iCore4 双核心板_ARM】例程十六:USB_HID实验——双向数据传输

    实验方法: 1.USB_HID协议免驱动,此例程不需要驱. 2.将跳线冒跳至USB_OTG,通过Micro USB 线将iCore4 USB-OTG接口与电脑相连. 3.打开上位机软件usb_hid. ...