P2221 [HAOI2012]高速公路
思路
考虑每一条边的贡献,然后推式子
\]
然后用线段树维护就好了
代码
#include <cstdio>
#include <algorithm>
#include <cstring>
#define int long long
using namespace std;
const int MAXN = 100100;
namespace Seg1{//v_i
int seg[MAXN<<2]={},tag[MAXN<<2]={};
void pushup(int o){
seg[o]=seg[o<<1]+seg[o<<1|1];
}
void build(int l,int r,int o,int *a){
if(l==r){
seg[o]=a[l];
return;
}
int mid=(l+r)>>1;
build(l,mid,o<<1,a);
build(mid+1,r,o<<1|1,a);
pushup(o);
}
void pushdown(int o,int ln,int rn){
if(tag[o]){
seg[o<<1]+=tag[o]*ln;
seg[o<<1|1]+=tag[o]*rn;
tag[o<<1]+=tag[o];
tag[o<<1|1]+=tag[o];
tag[o]=0;
}
}
void add(int L,int R,int l,int r,int o,int c){
if(L<=l&&r<=R){
seg[o]+=c*(r-l+1);
tag[o]+=c;
return;
}
int mid=(l+r)>>1;
pushdown(o,mid-l+1,r-mid);
if(L<=mid)
add(L,R,l,mid,o<<1,c);
if(R>mid)
add(L,R,mid+1,r,o<<1|1,c);
pushup(o);
}
int query(int L,int R,int l,int r,int o){
if(L<=l&&r<=R){
return seg[o];
}
int mid=(l+r)>>1,ans=0;
pushdown(o,mid-l+1,r-mid);
if(L<=mid)
ans+=query(L,R,l,mid,o<<1);
if(R>mid)
ans+=query(L,R,mid+1,r,o<<1|1);
return ans;
}
};
namespace Seg2{//v_i*i
int seg[MAXN<<2]={},tag[MAXN<<2]={};
int sum(int l,int r){
return (l+r)*(r-l+1)/2;
}
void pushup(int o){
seg[o]=seg[o<<1]+seg[o<<1|1];
}
void build(int l,int r,int o,int *a){
if(l==r){
seg[o]=a[l]*l;
return;
}
int mid=(l+r)>>1;
build(l,mid,o<<1,a);
build(mid+1,r,o<<1|1,a);
pushup(o);
}
void pushdown(int o,int lx,int rx){
if(tag[o]){
int mid=(lx+rx)>>1;
seg[o<<1]+=tag[o]*sum(lx,mid);
seg[o<<1|1]+=tag[o]*sum(mid+1,rx);
tag[o<<1]+=tag[o];
tag[o<<1|1]+=tag[o];
tag[o]=0;
}
}
void add(int L,int R,int l,int r,int o,int c){
if(L<=l&&r<=R){
seg[o]+=c*sum(l,r);
tag[o]+=c;
return;
}
int mid=(l+r)>>1;
pushdown(o,l,r);
if(L<=mid)
add(L,R,l,mid,o<<1,c);
if(R>mid)
add(L,R,mid+1,r,o<<1|1,c);
pushup(o);
}
int query(int L,int R,int l,int r,int o){
if(L<=l&&r<=R){
return seg[o];
}
int mid=(l+r)>>1,ans=0;
pushdown(o,l,r);
if(L<=mid)
ans+=query(L,R,l,mid,o<<1);
if(R>mid)
ans+=query(L,R,mid+1,r,o<<1|1);
return ans;
}
};
namespace Seg3{//vi*i^2
int seg[MAXN<<2]={},tag[MAXN<<2]={};
void pushup(int o){
seg[o]=seg[o<<1]+seg[o<<1|1];
}
int f(int x){
return (2*x+1)*(x+1)*x/6;
}
int sum(int l,int r){
return f(r)-f(l-1);
}
void build(int l,int r,int o,int *a){
if(l==r){
seg[o]=a[l]*l*l;
return;
}
int mid=(l+r)>>1;
build(l,mid,o<<1,a);
build(mid+1,r,o<<1|1,a);
pushup(o);
}
void pushdown(int o,int lx,int rx){
if(tag[o]){
int mid=(lx+rx)>>1;
seg[o<<1]+=tag[o]*sum(lx,mid);
seg[o<<1|1]+=tag[o]*sum(mid+1,rx);
tag[o<<1]+=tag[o];
tag[o<<1|1]+=tag[o];
tag[o]=0;
}
}
void add(int L,int R,int l,int r,int o,int c){
if(L<=l&&r<=R){
seg[o]+=c*sum(l,r);
tag[o]+=c;
return;
}
int mid=(l+r)>>1;
pushdown(o,l,r);
if(L<=mid)
add(L,R,l,mid,o<<1,c);
if(R>mid)
add(L,R,mid+1,r,o<<1|1,c);
pushup(o);
}
int query(int L,int R,int l,int r,int o){
if(L<=l&&r<=R){
return seg[o];
}
int mid=(l+r)>>1,ans=0;
pushdown(o,l,r);
if(L<=mid)
ans+=query(L,R,l,mid,o<<1);
if(R>mid)
ans+=query(L,R,mid+1,r,o<<1|1);
return ans;
}
void debug(int l,int r,int o){
printf("%lld %lld %lld %lld %lld\n",l,r,o,seg[o],tag[o]);
if(l==r)
return;
int mid=(l+r)>>1;
debug(l,mid,o<<1);
debug(mid+1,r,o<<1|1);
}
};
int gcd(int a,int b){
return (b==0)?a:gcd(b,a%b);
}
int a[MAXN]={0},n,m;
using namespace Seg1;
using namespace Seg2;
using namespace Seg3;
signed main(){
scanf("%lld %lld",&n,&m);
n--;
Seg1::build(1,n,1,a);
Seg2::build(1,n,1,a);
Seg3::build(1,n,1,a);
for(int i=1;i<=m;i++){
char c=getchar();
while(c!='C'&&c!='Q')
c=getchar();
if(c=='C'){
int l,r,val;
scanf("%lld %lld %lld",&l,&r,&val);
r--;
Seg1::add(l,r,1,n,1,val);
Seg2::add(l,r,1,n,1,val);
Seg3::add(l,r,1,n,1,val);
//Seg3::debug(1,n,1);
}
else{
int l,r;
scanf("%lld %lld",&l,&r);
r--;
int sum1=Seg1::query(l,r,1,n,1);
int sum2=Seg2::query(l,r,1,n,1);
int sum3=Seg3::query(l,r,1,n,1);
//Seg3::debug(1,n,1);
int ans=sum1*(r-l+1-r*l)+(r+l)*sum2-sum3;
// printf("sum1=%lld sum2=%lld sum3=%lld %lld\n",sum1,sum2,sum3,ans);
int t=(r-l+1)*(r-l+2)/2;
int Gcd=gcd(t,ans);
printf("%lld/%lld\n",ans/Gcd,t/Gcd);
}
}
return 0;
}
P2221 [HAOI2012]高速公路的更多相关文章
- P2221 [HAOI2012]高速公路(线段树)
P2221 [HAOI2012]高速公路 显然答案为 $\dfrac{\sum_{i=l}^r\sum_{j=l}^{r}dis[i][j]}{C_{r-l+1}^2}$ 下面倒是挺好算,组合数瞎搞 ...
- 洛谷 P2221 [HAOI2012]高速公路
链接: P2221 题意: 有 \(n(1\leq n\leq 10^5)\) 个点,从第 \(i(1\leq i< n)\) 个点向第 \(i+1\) 个点连有边.最初所有边长 \(v_i\) ...
- 洛谷P2221 [HAOI2012]高速公路
线段树 #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring> ...
- 【题解】Luogu P2221 [HAOI2012]高速公路
原题传送门 这道题还算简单 我们要求的期望值: \[\frac{\sum_{i=l}^r\sum_{j=l}^rdis[i][j]}{C_{r-l+1}^{2}}\] 当然是上下两部分分别求,下面肥肠 ...
- 洛谷P2221 [HAOI2012]高速公路(线段树+概率期望)
传送门 首先,答案等于$$ans=\sum_{i=l}^r\sum_{j=i}^r\frac{sum(i,j)}{C_{r-l+1}^2}$$ 也就是说所有情况的和除以总的情况数 因为这是一条链,我们 ...
- luogu P2221 [HAOI2012]高速公路题解
题面 很套路的拆式子然后线段树上维护区间和的题.一般都是把式子拆成区间内几个形如\(\sum i*a_i, \sum i^2 * a_i\)的式子相加减的形式. 考虑一次询问[l,r]的答案怎么算: ...
- BZOJ2752: [HAOI2012]高速公路(road)
2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 608 Solved: 199[Submit][ ...
- BZOJ 2752: [HAOI2012]高速公路(road)( 线段树 )
对于询问[L, R], 我们直接考虑每个p(L≤p≤R)的贡献,可以得到 然后化简一下得到 这样就可以很方便地用线段树, 维护一个p, p*vp, p*(p+1)*vp就可以了 ----------- ...
- 【线段树】BZOJ2752: [HAOI2012]高速公路(road)
2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 1621 Solved: 627[Submit] ...
随机推荐
- sitecore中的两种编辑工具介绍
在Sitecore中,有两种编辑工具,您可以在其中创建和编辑网站上的内容: 内容编辑器 - 专为熟悉Sitecore及其包含的功能的经验丰富的内容作者而设计的应用程序. 体验编辑器 - 一种直观的编辑 ...
- 如何在Sitecore CMS中打开内容编辑器
在Sitecore中开发网站时,大多数项目管理都来自内容编辑器.创建,删除,修改,移动,发布,排序和查看项目只是可以在Content Editor界面中处理的众多任务中的一小部分. 由于内容编辑器对于 ...
- 用Django实现Video页面分类查询
Model表创建,Url映射,Views函数处理,Html生成 根据上图,视频方向与视频分类是多对多的关系,视频分类与视频信息是一对多的关系,难度级别是单一的查询条件(与之前俩者并无关系) Model ...
- log4j日志输出使用_1
转自https://www.cnblogs.com/sky230/p/5759831.html Log4j是帮助开发人员进行日志输出管理的API类库.它最重要的特点就可以配置文件灵活的设置日志信息的优 ...
- L1正则和L2正则的比较分析详解
原文链接:https://blog.csdn.net/w5688414/article/details/78046960 范数(norm) 数学上,范数是一个向量空间或矩阵上所有向量的长度和大小的求和 ...
- 【转】Kylin系列-使用Saiku+Kylin构建多维分析OLAP平台
关于Kylin的介绍和使用请参考之前的文章 <分布式大数据多维分析(OLAP)引擎Apache Kylin安装配置及使用示例> Kylin对外提供的是SQL查询接口,基于Kylin构建OL ...
- MyBatis学习(一)简单入门程序
MyBatis入门学习 MyBatis 本是apache的一个开源项目iBatis, 2010年这个项目由apache software foundation 迁移到了google code,并且改名 ...
- 深度学习之循环神经网络RNN概述,双向LSTM实现字符识别
深度学习之循环神经网络RNN概述,双向LSTM实现字符识别 2. RNN概述 Recurrent Neural Network - 循环神经网络,最早出现在20世纪80年代,主要是用于时序数据的预测和 ...
- 阻塞队列---ArrayBlockingQueue,LinkedBlockingQueue,DelayQueue源码分析
阻塞队列和非阻塞队列阻塞队列和非阻塞队列的区别:阻塞队列可以自己阻塞,非阻塞队列不能自己阻塞,只能使用队列wait(),notify()进行队列消息传送.而阻塞队列当队列里面没有值时,会阻塞直到有值输 ...
- spring(读取外部数据库配置信息、基于注解管理bean、DI)
###解析外部配置文件在resources文件夹下,新建db.properties(和数据库连接相关的信息) driverClassName=com.mysql.jdbc.Driverurl=jdbc ...