目录

一、pymysql

二、SQLAlchemy

一、pymysql

pymsql是Python中操作MySQL的模块,其使用方法和MySQLdb几乎相同。

1. 下载安装

#在终端直接运行
pip3 install pymysql

2. 使用操作

a. 执行SQL

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql
  
# 创建连接
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='', db='t1')
# 创建游标
cursor = conn.cursor()
  
# 执行SQL,并返回受影响行数
effect_row = cursor.execute("update hosts set host = '1.1.1.2'")
  
# 执行SQL,并返回受影响行数
#effect_row = cursor.execute("update hosts set host = '1.1.1.2' where nid > %s", (1,))
  
# 执行SQL,并返回受影响行数
#effect_row = cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)])
  
  
# 提交,不然无法保存新建或者修改的数据
conn.commit()
  
# 关闭游标
cursor.close()
# 关闭连接
conn.close()

b. 获取新创建数据自增ID

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql
  
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='', db='t1')
cursor = conn.cursor()
cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)])
conn.commit() # 获取最新自增ID
new_id = cursor.lastrowid cursor.close()
conn.close()

c. 获取查询数据

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql
  
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='', db='t1')
cursor = conn.cursor()
cursor.execute("select * from hosts")
  
# 获取第一行数据
row_1 = cursor.fetchone()
  
# 获取前n行数据
# row_2 = cursor.fetchmany(3)
# 获取所有数据
# row_3 = cursor.fetchall()
  
conn.commit()
cursor.close()
conn.close()

注:在fetch数据时按照顺序进行,可以使用cursor.scroll(num,mode)来移动游标位置,如:

  • cursor.scroll(1,mode='relative')     # 相对当前位置移动
  • cursor.scroll(2,mode='absolute')   # 相对绝对位置移动

d. fetch数据类型

关于默认获取的数据是元组类型,如果想要获得字典类型的数据,即:

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql
  
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='', db='t1')
  
# 游标设置为字典类型
cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
r = cursor.execute("call p1()")
  
result = cursor.fetchone()
  
conn.commit()
cursor.close()
conn.close()

二、SQLAlchemy

SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数据API执行SQL并获取执行结果。

1. 下载安装

#在终端直接运行
pip3 install SQLAlchemy

2. SQLAlchemy依赖关系

SQLAlchemy本身无法操作数据库,其必须依赖pymsql等第三方插件,Dialect用于和数据API进行交流,根据配置文件的不同调用不同的数据库API,从而实现对数据库的操作。

MySQL-Python
    mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname>
   
pymysql
    mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>]
   
MySQL-Connector
    mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname>
   
cx_Oracle
    oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...]

3. ORM功能使用

使用 ORM/Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 所有组件对数据进行操作。根据类创建对象,对象转换成SQL,执行SQL。
a. 创建表
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine #表明依赖关系并创建连接,最大连接数为5 
engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5)
 
Base = declarative_base()
 
# 创建单表
class Users(Base):
    __tablename__ = 'users' # 表名
    id = Column(Integer, primary_key=True,autoincrement=True) # id列,主键自增
    name = Column(String(32)) # name列
    extra = Column(String(16)) # extra列
 
    __table_args__ = (
    UniqueConstraint('id', 'name', name='uix_id_name'), # 创建联合唯一索引
        Index('ix_id_name', 'name', 'extra'), # 创建普通索引
    )
 
 
# 一对多
class Favor(Base):
    __tablename__ = 'favor'
    nid = Column(Integer, primary_key=True)
    caption = Column(String(50), default='red', unique=True)
 
 
class Person(Base):
    __tablename__ = 'person'
    nid = Column(Integer, primary_key=True)
    name = Column(String(32), index=True, nullable=True)
    favor_id = Column(Integer, ForeignKey("favor.nid")) # 创建外键
 
 
# 多对多
class Group(Base):
    __tablename__ = 'group'
    id = Column(Integer, primary_key=True)
    name = Column(String(64), unique=True, nullable=False)
    port = Column(Integer, default=22)
 
 
class Server(Base):
    __tablename__ = 'server'
    id = Column(Integer, primary_key=True, autoincrement=True)
    hostname = Column(String(64), unique=True, nullable=False)
 
 
class ServerToGroup(Base):
    __tablename__ = 'servertogroup'
    nid = Column(Integer, primary_key=True, autoincrement=True)
    server_id = Column(Integer, ForeignKey('server.id')) # 创建外键
    group_id = Column(Integer, ForeignKey('group.id')) # 创建外键
 
 
def init_db():
    Base.metadata.create_all(engine)
 
 
def drop_db():
    Base.metadata.drop_all(engine)

注:设置外键的另一种方式 ForeignKeyConstraint(['other_id'], ['othertable.other_id'])

b. 操作表

#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5) Base = declarative_base() # 创建单表
class Users(Base):
__tablename__ = 'users'
id = Column(Integer, primary_key=True)
name = Column(String(32))
extra = Column(String(16)) __table_args__ = (
UniqueConstraint('id', 'name', name='uix_id_name'),
Index('ix_id_name', 'name', 'extra'),
) def __repr__(self):
return "%s-%s" %(self.id, self.name) # 一对多
class Favor(Base):
__tablename__ = 'favor'
nid = Column(Integer, primary_key=True)
caption = Column(String(50), default='red', unique=True) def __repr__(self):
return "%s-%s" %(self.nid, self.caption) class Person(Base):
__tablename__ = 'person'
nid = Column(Integer, primary_key=True)
name = Column(String(32), index=True, nullable=True)
favor_id = Column(Integer, ForeignKey("favor.nid"))
# 与生成表结构无关,仅用于查询方便
favor = relationship("Favor", backref='pers') # 多对多
class ServerToGroup(Base):
__tablename__ = 'servertogroup'
nid = Column(Integer, primary_key=True, autoincrement=True)
server_id = Column(Integer, ForeignKey('server.id'))
group_id = Column(Integer, ForeignKey('group.id'))
group = relationship("Group", backref='s2g')
server = relationship("Server", backref='s2g') class Group(Base):
__tablename__ = 'group'
id = Column(Integer, primary_key=True)
name = Column(String(64), unique=True, nullable=False)
port = Column(Integer, default=22)
# group = relationship('Group',secondary=ServerToGroup,backref='host_list') class Server(Base):
__tablename__ = 'server' id = Column(Integer, primary_key=True, autoincrement=True)
hostname = Column(String(64), unique=True, nullable=False) def init_db():
Base.metadata.create_all(engine) def drop_db():
Base.metadata.drop_all(engine) Session = sessionmaker(bind=engine)
session = Session()

表结构 + 数据库连接

b.1 增

#单条增加
obj = Users(name="alex0", extra='sb')
session.add(obj) #多条增加
session.add_all([
Users(name="alex1", extra='sb'),
Users(name="alex2", extra='sb'),
]) #提交
session.commit()

b.2 删

#先查询到要删除的记录,再delete
session.query(Users).filter(Users.id > 2).delete()
session.commit()

b.3 改

#先查询,再更新
session.query(Users).filter(Users.id > 2).update({"name" : ""}) # 直接更改
session.query(Users).filter(Users.id > 2).update({Users.name: Users.name + ""}, synchronize_session=False) # 字符串拼接
session.query(Users).filter(Users.id > 2).update({"num": Users.num + 1}, synchronize_session="evaluate") # 数字相加
session.commit()

b.4 查

ret = session.query(Users).all()
ret = session.query(Users.name, Users.extra).all()
ret = session.query(Users).filter_by(name='alex').all()
ret = session.query(Users).filter_by(name='alex').first() ret = session.query(Users).filter(text("id<:value and name=:name")).params(value=224, name='fred').order_by(User.id).all() ret = session.query(Users).from_statement(text("SELECT * FROM users where name=:name")).params(name='ed').all()

b.5 其它

# 条件
ret = session.query(Users).filter_by(name='alex').all() # 条件内为关键字表达式
ret = session.query(Users).filter(Users.id > 1, Users.name == 'eric').all() # 条件内为SQL表达式
ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == 'eric').all() # between
ret = session.query(Users).filter(Users.id.in_([1,3,4])).all() # in
ret = session.query(Users).filter(~Users.id.in_([1,3,4])).all() # not in
ret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name='eric'))).all() # 子查询条件 from sqlalchemy import and_, or_
ret = session.query(Users).filter(and_(Users.id > 3, Users.name == 'eric')).all() # and
ret = session.query(Users).filter(or_(Users.id < 2, Users.name == 'eric')).all() # or
ret = session.query(Users).filter(
or_(
Users.id < 2,
and_(Users.name == 'eric', Users.id > 3),
Users.extra != ""
)).all() # 通配符
ret = session.query(Users).filter(Users.name.like('e%')).all() # e开头
ret = session.query(Users).filter(~Users.name.like('e%')).all() # 非e开头 # 限制
ret = session.query(Users)[1:2] # 相当于limit # 排序
ret = session.query(Users).order_by(Users.name.desc()).all()
ret = session.query(Users).order_by(Users.name.desc(), Users.id.asc()).all() # 分组
from sqlalchemy.sql import func ret = session.query(Users).group_by(Users.extra).all()
ret = session.query(
func.max(Users.id),
func.sum(Users.id),
func.min(Users.id)).group_by(Users.name).all() ret = session.query(
func.max(Users.id),
func.sum(Users.id),
func.min(Users.id)).group_by(Users.name).having(func.min(Users.id) >2).all() # 连表 ret = session.query(Users, Favor).filter(Users.id == Favor.nid).all() # 笛卡儿积连表
ret = session.query(Person).join(Favor).all() # 默认内连 inner join
ret = session.query(Person).join(Favor, isouter=True).all() # 左连 # 组合
q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union(q2).all() q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union_all(q2).all()

参考资料:

1. Python开发【第十九篇】:Python操作MySQL

MySQL— pymysql and SQLAlchemy的更多相关文章

  1. 【转】MySQL— pymysql and SQLAlchemy

    [转]MySQL— pymysql and SQLAlchemy 目录 一.pymysql 二.SQLAlchemy 一.pymysql pymsql是Python中操作MySQL的模块,其使用方法和 ...

  2. Flask学习笔记:数据库ORM操作MySQL+pymysql/mysql-python+SQLAlchemy/Flask-SQLAlchemy

    Python中使用sqlalchemy插件可以实现ORM(Object Relationship Mapping,模型关系映射)框架,而Flask中的flask-sqlalchemy其实就是在sqla ...

  3. mysql、pymysql、SQLAlchemy

    1.MySQL介绍 http://www.cnblogs.com/wupeiqi/articles/5699254.html,基础操作参见此文章,此处不赘述. 安装:yum install mysql ...

  4. 14.python与数据库之mysql:pymysql、sqlalchemy

    相关内容: 使用pymysql直接操作mysql 创建表 查看表 修改表 删除表 插入数据 查看数据 修改数据 删除数据 使用sqlmary操作mysql 创建表 查看表 修改表 删除表 插入数据 查 ...

  5. Python操作MySQL:pymysql和SQLAlchemy

    本篇对于Python操作MySQL主要使用两种方式: 原生模块 pymsql ORM框架 SQLAchemy pymsql pymsql是Python中操作MySQL的模块,其使用方法和MySQLdb ...

  6. python运维开发(十二)----rabbitMQ、pymysql、SQLAlchemy

    内容目录: rabbitMQ python操作mysql,pymysql模块 Python ORM框架,SQLAchemy模块 Paramiko 其他with上下文切换 rabbitMQ Rabbit ...

  7. pymysql和 SQLAlchemy在python下的使用

    #!/usr/bin/env python # -*- coding:utf-8 -*- from sqlalchemy import create_engine, Table, Column, In ...

  8. 特殊汉字“𣸭”引发的对于字符集的思考;mysql字符集;sqlalchemy字符集设置;客户端字符集设置;

    字符集.字符序的概念与联系 在数据的存储上,MySQL提供了不同的字符集支持.而在数据的对比操作上,则提供了不同的字符序支持. MySQL提供了不同级别的设置,包括server级.database级. ...

  9. mysql数据库----python操作mysql ------pymysql和SQLAchemy

    本篇对于Python操作MySQL主要使用两种方式: 原生模块 pymsql ORM框架 SQLAchemy 一.pymysql pymsql是Python中操作MySQL的模块,其使用方法和MySQ ...

随机推荐

  1. 添加AD RMS role时,提示密码不能被验证The password could not be validated

    "The password could not be validated" when attempting to provision an AD RMS server. Sympt ...

  2. 洛谷 P2059 [JLOI2013]卡牌游戏 解题报告

    P2059 [JLOI2013]卡牌游戏 题意 有\(n\)个人玩约瑟夫游戏,有\(m\)张卡,每张卡上有一个正整数,每次庄家有放回的抽一张卡,干掉从庄家起顺时针的第\(k\)个人(计算庄家),干掉的 ...

  3. can总线的示波器检测方法

    stm32的can总线是在APB1上的,stm32f10x的主频是72Mhz,can外设时钟是36Mhz,stm32f2xx的主频是120Mhz,can外设时钟是30Mhz... STM32 APB1 ...

  4. Java -- JDBC_DAO 设计模式

    DAO:Date Access Object 实现代码模块化,更加有利于代码的维护和升级. DAO 可以被子类继承或者直接使用. 访问数据信息的类,包含对数据的CRUD(create read upd ...

  5. [POI2010]KLO-Blocks——一道值得思考的题

    题目大意: 给出N个正整数a[1..N],再给出一个正整数k,现在可以进行如下操作:每次选择一个大于k的正整数a[i],将a[i]减去1,选择a[i-1]或a[i+1]中的一个加上1.经过一定次数的操 ...

  6. noi.openjudge 2.6.162 Post Office

    http://noi.openjudge.cn/ch0206/162/ 总时间限制:  1000ms 内存限制:  65536kB 描述 There is a straight highway wit ...

  7. 十、java_IO

    目录: 一.java流式输入/输出原理 二.java流类的分类 三.输入/输出流类 四.常见的节点流和处理流 五.文件流 六.缓冲流 七.数据流 八.转换流 九.Print流 十.Ubject流 一. ...

  8. MapReduce与关系型数据库的不同之处。

    MapReduce能够被视为RDBMS(关系型数据库)的补充. 1.MapReduce适合处理那些需要分析整个数据集的问题(日志分析等),以批处理的方式.RDBMS适合做点查询和更新. 2.MapRe ...

  9. Hbase记录-HBase客户端API

    本章介绍用于对HBase表上执行CRUD操作的HBase Java客户端API. HBase是用Java编写的,并具有Java原生API.因此,它提供了编程访问数据操纵语言(DML). HBaseCo ...

  10. Java POI 读取word文件

    Apache POI是Apache软件基金会的开放源码函式库,POI提供API给Java程序对Microsoft Office格式档案读和写的功能. 1.读取word 2003及word 2007需要 ...