使用Pytorch进行图像分类,AI challenger 农作物病害分类竞赛源码解读
1.首先对给的数据进行划分,类型为每个类单独放在一个文件夹中
import json
import shutil
import os
from glob import glob
from tqdm import tqdm
# 此文件的作用是创建每个类的文件夹,以及根据给出来的Json中已经做好的分类,对数据进行对号入座划分。
# 加载json文件得出一个字典,然后根据Key值来提取每个文件到相应的文件夹中,(注意去除了不合理数据)
try:
for i in range(0,59):
os.mkdir("./data/train/" + str(i))
except:
pass
file_train = json.load(open("./data/temp/labels/AgriculturalDisease_train_annotations.json","r",encoding="utf-8"))
file_val = json.load(open("./data/temp/labels/AgriculturalDisease_validation_annotations.json","r",encoding="utf-8"))
file_list = file_train + file_val
for file in tqdm(file_list):
filename = file["image_id"]
origin_path = "./data/temp/images/" + filename
ids = file["disease_class"]
if ids == 44:
continue
if ids == 45:
continue
if ids > 45:
ids = ids -2
save_path = "./data/train/" + str(ids) + "/"
shutil.copy(origin_path,save_path)
2.获取增强数据集类的定义
1.采用自定义获取增强数据类,此Dataset类中重新定义了对数据进行数据增强的多种方式,不仅限于pytorch中自带的增强方式。
首先附上自定义的数据增强的函数代码:
方式一,以重新定义重载方法类的方式定义多种增强方式,在dataset类中的get_item方法中的compose中加入自定义的方法,即可调用。
# 数据增强的多种方式,使用自定义的方法。调用只需在dataloader.py文件中的get_item函数中调用类自身参数
# transforms,transforms中集合了compose,compose中列出详细所使用的增强方式。
from __future__ import division
import cv2
import numpy as np
from numpy import random
import math
from sklearn.utils import shuffle
# 常用的增强方式几乎都在这里,只需在compose中列出类名即可
__all__ = ['Compose','RandomHflip', 'RandomUpperCrop', 'Resize', 'UpperCrop', 'RandomBottomCrop',
"RandomErasing",'BottomCrop', 'Normalize', 'RandomSwapChannels', 'RandomRotate',
'RandomHShift',"CenterCrop","RandomVflip",'ExpandBorder', 'RandomResizedCrop',
'RandomDownCrop', 'DownCrop', 'ResizedCrop',"FixRandomRotate"]
# 组合
# “随机翻转”,“随机顶部切割”,“调整大小”,“上切割”,“随机底部切割”、
# “随机擦除”,“底部切割”,“正则化”,“随机交换频道”,“随机旋转”,
# “随机HShift”,“中央切割”,“随机Vflip”,“扩展边界”,“随机调整切割”,
# “随机下降”,“下降切割”, “调整切割”,“固定随机化”。
# 每个增强方式类需要调用普通方法描述如下:
def rotate_nobound(image, angle, center=None, scale=1.):
(h, w) = image.shape[:2]
# if the center is None, initialize it as the center of
# the image
if center is None:
center = (w // 2, h // 2)
# perform the rotation
M = cv2.getRotationMatrix2D(center, angle, scale)
rotated = cv2.warpAffine(image, M, (w, h))
return rotated
def scale_down(src_size, size):
w, h = size
sw, sh = src_size
if sh < h:
w, h = float(w * sh) / h, sh
if sw < w:
w, h = sw, float(h * sw) / w
return int(w), int(h)
def fixed_crop(src, x0, y0, w, h, size=None):
out = src[y0:y0 + h, x0:x0 + w]
if size is not None and (w, h) != size:
out = cv2.resize(out, (size[0], size[1]), interpolation=cv2.INTER_CUBIC)
return out
# 固定随机旋转
class FixRandomRotate(object):
def __init__(self, angles=[0,90,180,270], bound=False):
self.angles = angles
self.bound = bound
def __call__(self,img):
do_rotate = random.randint(0, 4)
angle=self.angles[do_rotate]
if self.bound:
img = rotate_bound(img, angle)
else:
img = rotate_nobound(img, angle)
return img
def center_crop(src, size):
h, w = src.shape[0:2]
new_w, new_h = scale_down((w, h), size)
x0 = int((w - new_w) / 2)
y0 = int((h - new_h) / 2)
out = fixed_crop(src, x0, y0, new_w, new_h, size)
return out
def bottom_crop(src, size):
h, w = src.shape[0:2]
new_w, new_h = scale_down((w, h), size)
x0 = int((w - new_w) / 2)
y0 = int((h - new_h) * 0.75)
out = fixed_crop(src, x0, y0, new_w, new_h, size)
return out
def rotate_bound(image, angle):
# grab the dimensions of the image and then determine the
# center
h, w = image.shape[:2]
(cX, cY) = (w // 2, h // 2)
M = cv2.getRotationMatrix2D((cX, cY), angle, 1.0)
cos = np.abs(M[0, 0])
sin = np.abs(M[0, 1])
# compute the new bounding dimensions of the image
nW = int((h * sin) + (w * cos))
nH = int((h * cos) + (w * sin))
# adjust the rotation matrix to take into account translation
M[0, 2] += (nW / 2) - cX
M[1, 2] += (nH / 2) - cY
rotated = cv2.warpAffine(image, M, (nW, nH))
return rotated
# 常用增强方式,以类的方式体现:
# 将多个transform组合起来使用
crop切割 filp旋转
class Compose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, img):
for t in self.transforms:
img = t(img)
return img
class RandomRotate(object):
def __init__(self, angles, bound=False):
self.angles = angles
self.bound = bound
def __call__(self,img):
do_rotate = random.randint(0, 2)
if do_rotate:
angle = np.random.uniform(self.angles[0], self.angles[1])
if self.bound:
img = rotate_bound(img, angle)
else:
img = rotate_nobound(img, angle)
return img
class RandomBrightness(object):
def __init__(self, delta=10):
assert delta >= 0
assert delta <= 255
self.delta = delta
def __call__(self, image):
if random.randint(2):
delta = random.uniform(-self.delta, self.delta)
image = (image + delta).clip(0.0, 255.0)
# print('RandomBrightness,delta ',delta)
return image
class RandomContrast(object):
def __init__(self, lower=0.9, upper=1.05):
self.lower = lower
self.upper = upper
assert self.upper >= self.lower, "contrast upper must be >= lower."
assert self.lower >= 0, "contrast lower must be non-negative."
# expects float image
def __call__(self, image):
if random.randint(2):
alpha = random.uniform(self.lower, self.upper)
# print('contrast:', alpha)
image = (image * alpha).clip(0.0,255.0)
return image
class RandomSaturation(object):
def __init__(self, lower=0.8, upper=1.2):
self.lower = lower
self.upper = upper
assert self.upper >= self.lower, "contrast upper must be >= lower."
assert self.lower >= 0, "contrast lower must be non-negative."
def __call__(self, image):
if random.randint(2):
alpha = random.uniform(self.lower, self.upper)
image[:, :, 1] *= alpha
# print('RandomSaturation,alpha',alpha)
return image
class RandomHue(object):
def __init__(self, delta=18.0):
assert delta >= 0.0 and delta <= 360.0
self.delta = delta
def __call__(self, image):
if random.randint(2):
alpha = random.uniform(-self.delta, self.delta)
image[:, :, 0] += alpha
image[:, :, 0][image[:, :, 0] > 360.0] -= 360.0
image[:, :, 0][image[:, :, 0] < 0.0] += 360.0
# print('RandomHue,alpha:', alpha)
return image
class ConvertColor(object):
def __init__(self, current='BGR', transform='HSV'):
self.transform = transform
self.current = current
def __call__(self, image):
if self.current == 'BGR' and self.transform == 'HSV':
image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
elif self.current == 'HSV' and self.transform == 'BGR':
image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
else:
raise NotImplementedError
return image
class RandomSwapChannels(object):
def __call__(self, img):
if np.random.randint(2):
order = np.random.permutation(3)
return img[:,:,order]
return img
class RandomCrop(object):
def __init__(self, size):
self.size = size
def __call__(self, image):
h, w, _ = image.shape
new_w, new_h = scale_down((w, h), self.size)
if w == new_w:
x0 = 0
else:
x0 = random.randint(0, w - new_w)
if h == new_h:
y0 = 0
else:
y0 = random.randint(0, h - new_h)
out = fixed_crop(image, x0, y0, new_w, new_h, self.size)
return out
class RandomResizedCrop(object):
def __init__(self, size,scale=(0.49, 1.0), ratio=(1., 1.)):
self.size = size
self.scale = scale
self.ratio = ratio
def __call__(self,img):
if random.random() < 0.2:
return cv2.resize(img,self.size)
h, w, _ = img.shape
area = h * w
d=1
for attempt in range(10):
target_area = random.uniform(self.scale[0], self.scale[1]) * area
aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])
new_w = int(round(math.sqrt(target_area * aspect_ratio)))
new_h = int(round(math.sqrt(target_area / aspect_ratio)))
if random.random() < 0.5:
new_h, new_w = new_w, new_h
if new_w < w and new_h < h:
x0 = random.randint(0, w - new_w)
y0 = (random.randint(0, h - new_h))//d
out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
return out
# Fallback
return center_crop(img, self.size)
class DownCrop():
def __init__(self, size, select, scale=(0.36,0.81)):
self.size = size
self.scale = scale
self.select = select
def __call__(self,img, attr_idx):
if attr_idx not in self.select:
return img, attr_idx
if attr_idx == 0:
self.scale=(0.64,1.0)
h, w, _ = img.shape
area = h * w
s = (self.scale[0]+self.scale[1])/2.0
target_area = s * area
new_w = int(round(math.sqrt(target_area)))
new_h = int(round(math.sqrt(target_area)))
if new_w < w and new_h < h:
dw = w-new_w
x0 = int(0.5*dw)
y0 = h-new_h
out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
return out, attr_idx
# Fallback
return center_crop(img, self.size), attr_idx
class ResizedCrop(object):
def __init__(self, size, select,scale=(0.64, 1.0), ratio=(3. / 4., 4. / 3.)):
self.size = size
self.scale = scale
self.ratio = ratio
self.select = select
def __call__(self,img, attr_idx):
if attr_idx not in self.select:
return img, attr_idx
h, w, _ = img.shape
area = h * w
d=1
if attr_idx == 2:
self.scale=(0.36,0.81)
d=2
if attr_idx == 0:
self.scale=(0.81,1.0)
target_area = (self.scale[0]+self.scale[1])/2.0 * area
# aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])
new_w = int(round(math.sqrt(target_area)))
new_h = int(round(math.sqrt(target_area)))
# if random.random() < 0.5:
# new_h, new_w = new_w, new_h
if new_w < w and new_h < h:
x0 = (w - new_w)//2
y0 = (h - new_h)//d//2
out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
# cv2.imshow('{}_img'.format(idx2attr_map[attr_idx]), img)
# cv2.imshow('{}_crop'.format(idx2attr_map[attr_idx]), out)
#
# cv2.waitKey(0)
return out, attr_idx
# Fallback
return center_crop(img, self.size), attr_idx
class RandomHflip(object):
def __call__(self, image):
if random.randint(2):
return cv2.flip(image, 1)
else:
return image
class RandomVflip(object):
def __call__(self, image):
if random.randint(2):
return cv2.flip(image, 0)
else:
return image
class Hflip(object):
def __init__(self,doHflip):
self.doHflip = doHflip
def __call__(self, image):
if self.doHflip:
return cv2.flip(image, 1)
else:
return image
class CenterCrop(object):
def __init__(self, size):
self.size = size
def __call__(self, image):
return center_crop(image, self.size)
class UpperCrop():
def __init__(self, size, scale=(0.09, 0.64)):
self.size = size
self.scale = scale
def __call__(self,img):
h, w, _ = img.shape
area = h * w
s = (self.scale[0]+self.scale[1])/2.0
target_area = s * area
new_w = int(round(math.sqrt(target_area)))
new_h = int(round(math.sqrt(target_area)))
if new_w < w and new_h < h:
dw = w-new_w
x0 = int(0.5*dw)
y0 = 0
out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
return out
# Fallback
return center_crop(img, self.size)
class RandomUpperCrop(object):
def __init__(self, size, select, scale=(0.09, 0.64), ratio=(3. / 4., 4. / 3.)):
self.size = size
self.scale = scale
self.ratio = ratio
self.select = select
def __call__(self,img, attr_idx):
if random.random() < 0.2:
return img, attr_idx
if attr_idx not in self.select:
return img, attr_idx
h, w, _ = img.shape
area = h * w
for attempt in range(10):
s = random.uniform(self.scale[0], self.scale[1])
d = 0.1 + (0.3 - 0.1) / (self.scale[1] - self.scale[0]) * (s - self.scale[0])
target_area = s * area
aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])
new_w = int(round(math.sqrt(target_area * aspect_ratio)))
new_h = int(round(math.sqrt(target_area / aspect_ratio)))
# new_w = int(round(math.sqrt(target_area)))
# new_h = int(round(math.sqrt(target_area)))
if new_w < w and new_h < h:
dw = w-new_w
x0 = random.randint(int((0.5-d)*dw), int((0.5+d)*dw)+1)
y0 = (random.randint(0, h - new_h))//10
out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
return out, attr_idx
# Fallback
return center_crop(img, self.size), attr_idx
class RandomDownCrop(object):
def __init__(self, size, select, scale=(0.36, 0.81), ratio=(3. / 4., 4. / 3.)):
self.size = size
self.scale = scale
self.ratio = ratio
self.select = select
def __call__(self,img, attr_idx):
if random.random() < 0.2:
return img, attr_idx
if attr_idx not in self.select:
return img, attr_idx
if attr_idx == 0:
self.scale=(0.64,1.0)
h, w, _ = img.shape
area = h * w
for attempt in range(10):
s = random.uniform(self.scale[0], self.scale[1])
d = 0.1 + (0.3 - 0.1) / (self.scale[1] - self.scale[0]) * (s - self.scale[0])
target_area = s * area
aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])
new_w = int(round(math.sqrt(target_area * aspect_ratio)))
new_h = int(round(math.sqrt(target_area / aspect_ratio)))
#
# new_w = int(round(math.sqrt(target_area)))
# new_h = int(round(math.sqrt(target_area)))
if new_w < w and new_h < h:
dw = w-new_w
x0 = random.randint(int((0.5-d)*dw), int((0.5+d)*dw)+1)
y0 = (random.randint((h - new_h)*9//10, h - new_h))
out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
# cv2.imshow('{}_img'.format(idx2attr_map[attr_idx]), img)
# cv2.imshow('{}_crop'.format(idx2attr_map[attr_idx]), out)
#
# cv2.waitKey(0)
return out, attr_idx
# Fallback
return center_crop(img, self.size), attr_idx
class RandomHShift(object):
def __init__(self, select, scale=(0.0, 0.2)):
self.scale = scale
self.select = select
def __call__(self,img, attr_idx):
if attr_idx not in self.select:
return img, attr_idx
do_shift_crop = random.randint(0, 2)
if do_shift_crop:
h, w, _ = img.shape
min_shift = int(w*self.scale[0])
max_shift = int(w*self.scale[1])
shift_idx = random.randint(min_shift, max_shift)
direction = random.randint(0,2)
if direction:
right_part = img[:, -shift_idx:, :]
left_part = img[:, :-shift_idx, :]
else:
left_part = img[:, :shift_idx, :]
right_part = img[:, shift_idx:, :]
img = np.concatenate((right_part, left_part), axis=1)
# Fallback
return img, attr_idx
class RandomBottomCrop(object):
def __init__(self, size, select, scale=(0.4, 0.8)):
self.size = size
self.scale = scale
self.select = select
def __call__(self,img, attr_idx):
if attr_idx not in self.select:
return img, attr_idx
h, w, _ = img.shape
area = h * w
for attempt in range(10):
s = random.uniform(self.scale[0], self.scale[1])
d = 0.25 + (0.45 - 0.25) / (self.scale[1] - self.scale[0]) * (s - self.scale[0])
target_area = s * area
new_w = int(round(math.sqrt(target_area)))
new_h = int(round(math.sqrt(target_area)))
if new_w < w and new_h < h:
dw = w-new_w
dh = h - new_h
x0 = random.randint(int((0.5-d)*dw), min(int((0.5+d)*dw)+1,dw))
y0 = (random.randint(max(0,int(0.8*dh)-1), dh))
out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
return out, attr_idx
# Fallback
return bottom_crop(img, self.size), attr_idx
class BottomCrop():
def __init__(self, size, select, scale=(0.4, 0.8)):
self.size = size
self.scale = scale
self.select = select
def __call__(self,img, attr_idx):
if attr_idx not in self.select:
return img, attr_idx
h, w, _ = img.shape
area = h * w
s = (self.scale[0]+self.scale[1])/3.*2.
target_area = s * area
new_w = int(round(math.sqrt(target_area)))
new_h = int(round(math.sqrt(target_area)))
if new_w < w and new_h < h:
dw = w-new_w
dh = h-new_h
x0 = int(0.5*dw)
y0 = int(0.9*dh)
out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
return out, attr_idx
# Fallback
return bottom_crop(img, self.size), attr_idx
class Resize(object):
def __init__(self, size, inter=cv2.INTER_CUBIC):
self.size = size
self.inter = inter
def __call__(self, image):
return cv2.resize(image, (self.size[0], self.size[0]), interpolation=self.inter)
class ExpandBorder(object):
def __init__(self, mode='constant', value=255, size=(336,336), resize=False):
self.mode = mode
self.value = value
self.resize = resize
self.size = size
def __call__(self, image):
h, w, _ = image.shape
if h > w:
pad1 = (h-w)//2
pad2 = h - w - pad1
if self.mode == 'constant':
image = np.pad(image, ((0, 0), (pad1, pad2), (0, 0)),
self.mode, constant_values=self.value)
else:
image = np.pad(image,((0,0), (pad1, pad2),(0,0)), self.mode)
elif h < w:
pad1 = (w-h)//2
pad2 = w-h - pad1
if self.mode == 'constant':
image = np.pad(image, ((pad1, pad2),(0, 0), (0, 0)),
self.mode,constant_values=self.value)
else:
image = np.pad(image, ((pad1, pad2), (0, 0), (0, 0)),self.mode)
if self.resize:
image = cv2.resize(image, (self.size[0], self.size[0]),interpolation=cv2.INTER_LINEAR)
return image
class AstypeToInt():
def __call__(self, image, attr_idx):
return image.clip(0,255.0).astype(np.uint8), attr_idx
class AstypeToFloat():
def __call__(self, image, attr_idx):
return image.astype(np.float32), attr_idx
import matplotlib.pyplot as plt
class Normalize(object):
def __init__(self,mean, std):
'''
:param mean: RGB order
:param std: RGB order
'''
self.mean = np.array(mean).reshape(3,1,1)
self.std = np.array(std).reshape(3,1,1)
def __call__(self, image):
'''
:param image: (H,W,3) RGB
:return:
'''
# plt.figure(1)
# plt.imshow(image)
# plt.show()
return (image.transpose((2, 0, 1)) / 255. - self.mean) / self.std
class RandomErasing(object):
def __init__(self, select,EPSILON=0.5,sl=0.02, sh=0.09, r1=0.3, mean=[0.485, 0.456, 0.406]):
self.EPSILON = EPSILON
self.mean = mean
self.sl = sl
self.sh = sh
self.r1 = r1
self.select = select
def __call__(self, img,attr_idx):
if attr_idx not in self.select:
return img,attr_idx
if random.uniform(0, 1) > self.EPSILON:
return img,attr_idx
for attempt in range(100):
area = img.shape[1] * img.shape[2]
target_area = random.uniform(self.sl, self.sh) * area
aspect_ratio = random.uniform(self.r1, 1 / self.r1)
h = int(round(math.sqrt(target_area * aspect_ratio)))
w = int(round(math.sqrt(target_area / aspect_ratio)))
if w <= img.shape[2] and h <= img.shape[1]:
x1 = random.randint(0, img.shape[1] - h)
y1 = random.randint(0, img.shape[2] - w)
if img.shape[0] == 3:
# img[0, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
# img[1, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
# img[2, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
img[0, x1:x1 + h, y1:y1 + w] = self.mean[0]
img[1, x1:x1 + h, y1:y1 + w] = self.mean[1]
img[2, x1:x1 + h, y1:y1 + w] = self.mean[2]
# img[:, x1:x1+h, y1:y1+w] = torch.from_numpy(np.random.rand(3, h, w))
else:
img[0, x1:x1 + h, y1:y1 + w] = self.mean[1]
# img[0, x1:x1+h, y1:y1+w] = torch.from_numpy(np.random.rand(1, h, w))
return img,attr_idx
return img,attr_idx
if __name__ == '__main__':
import matplotlib.pyplot as plt
class FSAug(object):
def __init__(self):
self.augment = Compose([
AstypeToFloat(),
# RandomHShift(scale=(0.,0.2),select=range(8)),
# RandomRotate(angles=(-20., 20.), bound=True),
ExpandBorder(select=range(8), mode='symmetric'),# symmetric
# Resize(size=(336, 336), select=[ 2, 7]),
AstypeToInt()
])
def __call__(self, spct,attr_idx):
return self.augment(spct,attr_idx)
trans = FSAug()
img_path = '/media/gserver/data/FashionAI/round2/train/Images/coat_length_labels/0b6b4a2146fc8616a19fcf2026d61d50.jpg'
img = cv2.cvtColor(cv2.imread(img_path),cv2.COLOR_BGR2RGB)
img_trans,_ = trans(img,5)
# img_trans2,_ = trans(img,6)
plt.figure()
plt.subplot(221)
plt.imshow(img)
plt.subplot(222)
plt.imshow(img_trans)
# plt.subplot(223)
# plt.imshow(img_trans2)
# plt.imshow(img_trans2)
plt.show()
方式二: 用于线下增强数据,采用的方法是
- 高斯噪声
- 亮度变化
- 左右翻转
- 上下翻转
- 色彩抖动
- 对化
- 锐度变化
from PIL import Image,ImageEnhance,ImageFilter,ImageOps import os import shutil import numpy as np import cv2 import random from skimage.util import random_noise from skimage import exposure image_number = 0 raw_path = "./data/train/" new_path = "./aug/train/" # 加高斯噪声 def addNoise(img): ''' 注意:输出的像素是[0,1]之间,所以乘以5得到[0,255]之间 ''' return random_noise(img, mode='gaussian', seed=13, clip=True)*255 def changeLight(img): rate = random.uniform(0.5, 1.5) # print(rate) img = exposure.adjust_gamma(img, rate) #大于1为调暗,小于1为调亮;1.05 return img try: for i in range(59): os.makedirs(new_path + os.sep + str(i)) except: pass for raw_dir_name in range(59): raw_dir_name = str(raw_dir_name) saved_image_path = new_path + raw_dir_name+"/" raw_image_path = raw_path + raw_dir_name+"/" if not os.path.exists(saved_image_path): os.mkdir(saved_image_path) raw_image_file_name = os.listdir(raw_image_path) raw_image_file_path = [] for i in raw_image_file_name: raw_image_file_path.append(raw_image_path+i) for x in raw_image_file_path: img = Image.open(x) cv_image = cv2.imread(x) # 高斯噪声 gau_image = addNoise(cv_image) # 随机改变 light = changeLight(cv_image) light_and_gau = addNoise(light) cv2.imwrite(saved_image_path + "gau_" + os.path.basename(x),gau_image) cv2.imwrite(saved_image_path + "light_" + os.path.basename(x),light) cv2.imwrite(saved_image_path + "gau_light" + os.path.basename(x),light_and_gau) #img = img.resize((800,600)) #1.翻转 img_flip_left_right = img.transpose(Image.FLIP_LEFT_RIGHT) img_flip_top_bottom = img.transpose(Image.FLIP_TOP_BOTTOM) #2.旋转 #img_rotate_90 = img.transpose(Image.ROTATE_90) #img_rotate_180 = img.transpose(Image.ROTATE_180) #img_rotate_270 = img.transpose(Image.ROTATE_270) #img_rotate_90_left = img_flip_left_right.transpose(Image.ROTATE_90) #img_rotate_270_left = img_flip_left_right.transpose(Image.ROTATE_270) #3.亮度 #enh_bri = ImageEnhance.Brightness(img) #brightness = 1.5 #image_brightened = enh_bri.enhance(brightness) #4.色彩 #enh_col = ImageEnhance.Color(img) #color = 1.5 #image_colored = enh_col.enhance(color) #5.对比度 enh_con = ImageEnhance.Contrast(img) contrast = 1.5 image_contrasted = enh_con.enhance(contrast) #6.锐度 #enh_sha = ImageEnhance.Sharpness(img) #sharpness = 3.0 #image_sharped = enh_sha.enhance(sharpness) #保存 img.save(saved_image_path + os.path.basename(x)) img_flip_left_right.save(saved_image_path + "left_right_" + os.path.basename(x)) img_flip_top_bottom.save(saved_image_path + "top_bottom_" + os.path.basename(x)) #img_rotate_90.save(saved_image_path + "rotate_90_" + os.path.basename(x)) #img_rotate_180.save(saved_image_path + "rotate_180_" + os.path.basename(x)) #img_rotate_270.save(saved_image_path + "rotate_270_" + os.path.basename(x)) #img_rotate_90_left.save(saved_image_path + "rotate_90_left_" + os.path.basename(x)) #img_rotate_270_left.save(saved_image_path + "rotate_270_left_" + os.path.basename(x)) #image_brightened.save(saved_image_path + "brighted_" + os.path.basename(x)) #image_colored.save(saved_image_path + "colored_" + os.path.basename(x)) image_contrasted.save(saved_image_path + "contrasted_" + os.path.basename(x)) #image_sharped.save(saved_image_path + "sharped_" + os.path.basename(x)) image_number += 1 print("convert pictur" "es :%s size:%s mode:%s" % (image_number, img.size, img.mode))加载数据的类(自定义继承)
- 与pytorch中的加载数据类差不多,只是多了自己的某些功能。
from torch.utils.data import Dataset from torchvision import transforms as T from config import config from PIL import Image from itertools import chain from glob import glob from tqdm import tqdm import random import numpy as np import pandas as pd import os import cv2 import torch #1.set random seed random.seed(config.seed) np.random.seed(config.seed) torch.manual_seed(config.seed) torch.cuda.manual_seed_all(config.seed) #2.define dataset class ZiyiDataset(Dataset): def __init__(self,label_list,transforms=None,train=True,test=False): self.test = test self.train = train imgs = [] if self.test: for index,row in label_list.iterrows(): imgs.append((row["filename"])) self.imgs = imgs else: for index,row in label_list.iterrows(): imgs.append((row["filename"],row["label"])) self.imgs = imgs if transforms is None: if self.test or not train: self.transforms = T.Compose([ T.Resize((config.img_weight,config.img_height)), T.ToTensor(), T.Normalize(mean = [0.485,0.456,0.406], std = [0.229,0.224,0.225])]) else: self.transforms = T.Compose([ T.Resize((config.img_weight,config.img_height)), T.RandomRotation(30), T.RandomHorizontalFlip(), T.RandomVerticalFlip(), T.RandomAffine(45), T.ToTensor(), T.Normalize(mean = [0.485,0.456,0.406], std = [0.229,0.224,0.225])]) else: self.transforms = transforms def __getitem__(self,index): if self.test: filename = self.imgs[index] img = Image.open(filename) img = self.transforms(img) return img,filename else: filename,label = self.imgs[index] img = Image.open(filename) img = self.transforms(img) return img,label def __len__(self): return len(self.imgs) def collate_fn(batch): imgs = [] label = [] for sample in batch: imgs.append(sample[0]) label.append(sample[1]) return torch.stack(imgs, 0), \ label def get_files(root,mode): #for test if mode == "test": files = [] for img in os.listdir(root): files.append(root + img) files = pd.DataFrame({"filename":files}) return files elif mode != "test": #for train and val all_data_path,labels = [],[] image_folders = list(map(lambda x:root+x,os.listdir(root))) jpg_image_1 = list(map(lambda x:glob(x+"/*.jpg"),image_folders)) jpg_image_2 = list(map(lambda x:glob(x+"/*.JPG"),image_folders)) all_images = list(chain.from_iterable(jpg_image_1 + jpg_image_2)) print("loading train dataset") for file in tqdm(all_images): all_data_path.append(file) labels.append(int(file.split("/")[-2])) all_files = pd.DataFrame({"filename":all_data_path,"label":labels}) return all_files else: print("check the mode please!")
3.获取模型
获取模型较为简单,单一模型采取pytorch中的预训练模型,添加所需要的层,进行微调然后迁移学习新数据。
import torchvision
import torch.nn.functional as F
from torch import nn
from config import config
def generate_model():
class DenseModel(nn.Module):
def __init__(self, pretrained_model):
super(DenseModel, self).__init__()
self.classifier = nn.Linear(pretrained_model.classifier.in_features, config.num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal(m.weight)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.bias.data.zero_()
self.features = pretrained_model.features
self.layer1 = pretrained_model.features._modules['denseblock1']
self.layer2 = pretrained_model.features._modules['denseblock2']
self.layer3 = pretrained_model.features._modules['denseblock3']
self.layer4 = pretrained_model.features._modules['denseblock4']
def forward(self, x):
features = self.features(x)
out = F.relu(features, inplace=True)
out = F.avg_pool2d(out, kernel_size=8).view(features.size(0), -1)
out = F.sigmoid(self.classifier(out))
return out
return DenseModel(torchvision.models.densenet169(pretrained=True))
def get_net():
#return MyModel(torchvision.models.resnet101(pretrained = True))
model = torchvision.models.resnet50(pretrained = True)
#for param in model.parameters():
# param.requires_grad = False
# pytorch添加层的方式直接在Model.层名=层具体形式
model.avgpool = nn.AdaptiveAvgPool2d(1)
model.fc = nn.Linear(2048,config.num_classes) #添加全连接层以作分类任务,num_classes为分类个数
return model
4.开始训练
import os
import random
import time
import json
import torch
import torchvision
import numpy as np
import pandas as pd
import warnings
from datetime import datetime
from torch import nn,optim
from config import config
from collections import OrderedDict
from torch.autograd import Variable
from torch.utils.data import DataLoader
from dataset.dataloader import *
from sklearn.model_selection import train_test_split,StratifiedKFold
from timeit import default_timer as timer
from models.model import *
from utils import *
#1. 设置随机种子 and cudnn performance
random.seed(config.seed)
np.random.seed(config.seed)
torch.manual_seed(config.seed)
torch.cuda.manual_seed_all(config.seed)
os.environ["CUDA_VISIBLE_DEVICES"] = config.gpus
torch.backends.cudnn.benchmark = True
warnings.filterwarnings('ignore')
#2. 评估函数,通过Losses,topk的不断更新来评估模型
def evaluate(val_loader,model,criterion):
#2.1 AverageMeter类是Computes and stores the average and current value
# 创建三个其对象,以用于评估
losses = AverageMeter()
top1 = AverageMeter()
top2 = AverageMeter()
#2.2 开启评估模式 and confirm model has been transfered to cuda
model.cuda()
model.eval()
with torch.no_grad():
for i,(input,target) in enumerate(val_loader):
input = Variable(input).cuda()
target = Variable(torch.from_numpy(np.array(target)).long()).cuda()
#target = Variable(target).cuda()
#2.2.1 compute output
output = model(input)
loss = criterion(output,target)
#2.2.2 measure accuracy and record loss
precision1,precision2 = accuracy(output,target,topk=(1,2))
losses.update(loss.item(),input.size(0))
top1.update(precision1[0],input.size(0))
top2.update(precision2[0],input.size(0))
return [losses.avg,top1.avg,top2.avg]
#3. test model on public dataset and save the probability matrix
def test(test_loader,model,folds):
#3.1 confirm the model converted to cuda
# 得出的结果是概率,再用softmax得出最终分类结果
csv_map = OrderedDict({"filename":[],"probability":[]})
model.cuda()
model.eval()
with open("./submit/baseline.json","w",encoding="utf-8") as f :
submit_results = []
for i,(input,filepath) in enumerate(tqdm(test_loader)):
# filepath??????
# 通过模型得到输出概率结果,再用softmax得出预测结果,写入文件。
#3.2 change everything to cuda and get only basename
filepath = [os.path.basename(x) for x in filepath]
with torch.no_grad():
image_var = Variable(input).cuda()
#3.3.output
#print(filepath)
#print(input,input.shape)
y_pred = model(image_var)
#print(y_pred.shape)
smax = nn.Softmax(1)
smax_out = smax(y_pred)
#3.4 save probability to csv files
csv_map["filename"].extend(filepath)
for output in smax_out:
prob = ";".join([str(i) for i in output.data.tolist()])
csv_map["probability"].append(prob)
result = pd.DataFrame(csv_map)
result["probability"] = result["probability"].map(lambda x : [float(i) for i in x.split(";")])
for index, row in result.iterrows():
# 因为44,45类删除,所以预测结果加2
pred_label = np.argmax(row['probability'])
if pred_label > 43:
pred_label = pred_label + 2
submit_results.append({"image_id":row['filename'],"disease_class":pred_label})
json.dump(submit_results,f,ensure_ascii=False,cls = MyEncoder)
#4. more details to build main function
def main():
fold = 0
#4.1 mkdirs
if not os.path.exists(config.submit):
os.mkdir(config.submit)
if not os.path.exists(config.weights):
os.mkdir(config.weights)
if not os.path.exists(config.best_models):
os.mkdir(config.best_models)
if not os.path.exists(config.logs):
os.mkdir(config.logs)
if not os.path.exists(config.weights + config.model_name + os.sep +str(fold) + os.sep):
os.makedirs(config.weights + config.model_name + os.sep +str(fold) + os.sep)
if not os.path.exists(config.best_models + config.model_name + os.sep +str(fold) + os.sep):
os.makedirs(config.best_models + config.model_name + os.sep +str(fold) + os.sep)
#4.2 get model and optimizer
model = get_net()
#model = torch.nn.DataParallel(model)
model.cuda()
#optimizer = optim.SGD(model.parameters(),lr = config.lr,momentum=0.9,weight_decay=config.weight_decay)
optimizer = optim.Adam(model.parameters(),lr = config.lr,amsgrad=True,weight_decay=config.weight_decay)
criterion = nn.CrossEntropyLoss().cuda()
#criterion = FocalLoss().cuda()
log = Logger()
log.open(config.logs + "log_train.txt",mode="a")
log.write("\n----------------------------------------------- [START %s] %s\n\n" % (datetime.now().strftime('%Y-%m-%d %H:%M:%S'), '-' * 51))
#4.3 some parameters for K-fold and restart model
start_epoch = 0
best_precision1 = 0
best_precision_save = 0
resume = False
#4.4 restart the training process
if resume:
checkpoint = torch.load(config.best_models + str(fold) + "/model_best.pth.tar")
start_epoch = checkpoint["epoch"]
fold = checkpoint["fold"]
best_precision1 = checkpoint["best_precision1"]
model.load_state_dict(checkpoint["state_dict"])
optimizer.load_state_dict(checkpoint["optimizer"])
#4.5 get files and split for K-fold dataset
#4.5.1 read files
train_ = get_files(config.train_data,"train")
#val_data_list = get_files(config.val_data,"val")
test_files = get_files(config.test_data,"test")
"""
#4.5.2 split
split_fold = StratifiedKFold(n_splits=3)
folds_indexes = split_fold.split(X=origin_files["filename"],y=origin_files["label"])
folds_indexes = np.array(list(folds_indexes))
fold_index = folds_indexes[fold]
#4.5.3 using fold index to split for train data and val data
train_data_list = pd.concat([origin_files["filename"][fold_index[0]],origin_files["label"][fold_index[0]]],axis=1)
val_data_list = pd.concat([origin_files["filename"][fold_index[1]],origin_files["label"][fold_index[1]]],axis=1)
"""
train_data_list,val_data_list = train_test_split(train_,test_size = 0.15,stratify=train_["label"])
#4.5.4 load dataset
train_dataloader = DataLoader(ZiyiDataset(train_data_list),batch_size=config.batch_size,shuffle=True,collate_fn=collate_fn,pin_memory=True)
val_dataloader = DataLoader(ZiyiDataset(val_data_list,train=False),batch_size=config.batch_size,shuffle=True,collate_fn=collate_fn,pin_memory=False)
test_dataloader = DataLoader(ZiyiDataset(test_files,test=True),batch_size=1,shuffle=False,pin_memory=False)
#scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,"max",verbose=1,patience=3)
scheduler = optim.lr_scheduler.StepLR(optimizer,step_size = 10,gamma=0.1)
# optim.lr_scheduler 提供了基于多种epoch数目调整学习率的方法
# step_size(整数类型): 调整学习率的步长,每过step_size次,更新一次学习率
# gamma(float 类型):学习率下降的乘数因子
#4.5.5.1 define metrics
train_losses = AverageMeter()
train_top1 = AverageMeter()
train_top2 = AverageMeter()
valid_loss = [np.inf,0,0]
model.train()
#logs
log.write('** start training here! **\n')
log.write(' |------------ VALID -------------|----------- TRAIN -------------|------Accuracy------|------------|\n')
log.write('lr iter epoch | loss top-1 top-2 | loss top-1 top-2 | Current Best | time |\n')
log.write('-------------------------------------------------------------------------------------------------------------------------------\n')
#4.5.5 train
start = timer()
for epoch in range(start_epoch,config.epochs):
# 一个epoch为所有数据迭代一次进入模型拟合的过程,其中又分为batch_size来分批次进行
scheduler.step(epoch)
# train
#global iter
for iter,(input,target) in enumerate(train_dataloader):
#4.5.5 switch to continue train process
model.train()
input = Variable(input).cuda()
target = Variable(torch.from_numpy(np.array(target)).long()).cuda()
#target = Variable(target).cuda()
output = model(input)
loss = criterion(output,target)
precision1_train,precision2_train = accuracy(output,target,topk=(1,2))
train_losses.update(loss.item(),input.size(0))
train_top1.update(precision1_train[0],input.size(0))
train_top2.update(precision2_train[0],input.size(0))
#backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr = get_learning_rate(optimizer)
print('\r',end='',flush=True)
print('%0.4f %5.1f %6.1f | %0.3f %0.3f %0.3f | %0.3f %0.3f %0.3f | %s | %s' % (\
lr, iter/len(train_dataloader) + epoch, epoch,
valid_loss[0], valid_loss[1], valid_loss[2],
train_losses.avg, train_top1.avg, train_top2.avg,str(best_precision_save),
time_to_str((timer() - start),'min'))
, end='',flush=True)
#evaluate
lr = get_learning_rate(optimizer)
#evaluate every half epoch
valid_loss = evaluate(val_dataloader,model,criterion)
is_best = valid_loss[1] > best_precision1
best_precision1 = max(valid_loss[1],best_precision1)
try:
best_precision_save = best_precision1.cpu().data.numpy()
except:
pass
save_checkpoint({
"epoch":epoch + 1,
"model_name":config.model_name,
"state_dict":model.state_dict(),
"best_precision1":best_precision1,
"optimizer":optimizer.state_dict(),
"fold":fold,
"valid_loss":valid_loss,
},is_best,fold)
#adjust learning rate
#scheduler.step(valid_loss[1])
print("\r",end="",flush=True)
log.write('%0.4f %5.1f %6.1f | %0.3f %0.3f %0.3f | %0.3f %0.3f %0.3f | %s | %s' % (\
lr, 0 + epoch, epoch,
valid_loss[0], valid_loss[1], valid_loss[2],
train_losses.avg, train_top1.avg, train_top2.avg, str(best_precision_save),
time_to_str((timer() - start),'min'))
)
log.write('\n')
time.sleep(0.01)
best_model = torch.load(config.best_models + os.sep+config.model_name+os.sep+ str(fold) +os.sep+ 'model_best.pth.tar')
model.load_state_dict(best_model["state_dict"])
test(test_dataloader,model,fold)
if __name__ =="__main__":
main()
使用Pytorch进行图像分类,AI challenger 农作物病害分类竞赛源码解读的更多相关文章
- [源码解读] ResNet源码解读(pytorch)
自己看读完pytorch封装的源码后,自己又重新写了一边(模仿其书写格式), 一些问题在代码中说明. import torch import torchvision import argparse i ...
- PyTorch源码解读之torchvision.transforms(转)
原文地址:https://blog.csdn.net/u014380165/article/details/79167753 版权声明:本文为博主原创文章,未经博主允许不得转载. https://bl ...
- PyTorch源码解读之torchvision.models(转)
原文地址:https://blog.csdn.net/u014380165/article/details/79119664 PyTorch框架中有一个非常重要且好用的包:torchvision,该包 ...
- PyTorch源码解读之torch.utils.data.DataLoader(转)
原文链接 https://blog.csdn.net/u014380165/article/details/79058479 写得特别好!最近正好在学习pytorch,学习一下! PyTorch中数据 ...
- pytorch bert 源码解读
https://daiwk.github.io/posts/nlp-bert.html 目录 概述 BERT 模型架构 Input Representation Pre-training Tasks ...
- [源码解析] PyTorch 分布式(1) --- 数据加载之DistributedSampler
[源码解析] PyTorch 分布式(1) --- 数据加载之DistributedSampler 目录 [源码解析] PyTorch 分布式(1) --- 数据加载之DistributedSampl ...
- [源码解析] PyTorch 分布式(2) --- 数据加载之DataLoader
[源码解析] PyTorch 分布式(2) --- 数据加载之DataLoader 目录 [源码解析] PyTorch 分布式(2) --- 数据加载之DataLoader 0x00 摘要 0x01 ...
- [源码解析] PyTorch 分布式之弹性训练(1) --- 总体思路
[源码解析] PyTorch 分布式之弹性训练(1) --- 总体思路 目录 [源码解析] PyTorch 分布式之弹性训练(1) --- 总体思路 0x00 摘要 0x01 痛点 0x02 难点 0 ...
- [源码解析] PyTorch 分布式之弹性训练(6)---监控/容错
[源码解析] PyTorch 分布式之弹性训练(6)---监控/容错 目录 [源码解析] PyTorch 分布式之弹性训练(6)---监控/容错 0x00 摘要 0x01 总体逻辑 1.1 Node集 ...
随机推荐
- [No0000110]Git9/9-自定义Git
在安装Git一节中,我们已经配置了user.name和user.email,实际上,Git还有很多可配置项. 比如,让Git显示颜色,会让命令输出看起来更醒目: $ git config --glob ...
- 【单调栈】hdu 6319 杭电多校Problem A. Ascending Rating
http://acm.hdu.edu.cn/showproblem.php?pid=6319 从后往前更新,维护一个递减单调栈(队列) 最近很多题都是单调栈... #define _CRT_SECUR ...
- 【绿书】 模拟,rep大坑
https://vjudge.net/contest/229603#problem/B 绿书题 大模拟,绿书上用了个比较麻烦的输入,其实只要getchar()!='0'就行 坑: rep(i,0,s. ...
- mysql-5.7免安装版本设置
mysql-5.7.22 免安装版本设置(Windows7) 一.在Mysql官网下载Mysql-5.7.22的ZIP文件 下载链接为:https://dev.mysql.com/downloads ...
- Java之旅_面向对象_重写和重载
参考并摘自:http://www.runoob.com/java/java-override-overload.html 重写(Override) 子类对父类(允许访问的)方法的实现过程进行重新编写, ...
- Orchard Core 模块化
在上一篇文章谈到如何搭好一个基础的Orchard Core项目. 今天要尝试Orchard Core的模块化. 我自己的理解:一个系统可以分成一个个模块,这一个个模块是由一个个类库去实现的. 首先,在 ...
- python全栈开发day12
列表 创建列表: 基本操作: 索引 切片 追加 删除 长度 切片 循环 包含 #######################列表list类中提供的方法######################## ...
- net use共享文件访问
NET USE "\\xxx.xxx.xxx.xxx\vms\Application Files" "password123" /USER:"ap\1 ...
- (4.1)mysql备份还原——mysql常见故障
(4.1)mysql备份还原——mysql常见故障 1.常见故障类型 在数据库环境中,常见故障类型: 语句失败,用户进程失败,用户错误 实例失败,介质故障,网络故障 其中最严重的故障主要是用户错误和介 ...
- SegmentedControlIOS使用
代码: import React, { Component } from 'react'; import { AppRegistry, StyleSheet, Text, SegmentedContr ...