使用Pytorch进行图像分类,AI challenger 农作物病害分类竞赛源码解读
1.首先对给的数据进行划分,类型为每个类单独放在一个文件夹中
 import json
 import shutil
 import os
 from glob import glob
 from tqdm import tqdm
 # 此文件的作用是创建每个类的文件夹,以及根据给出来的Json中已经做好的分类,对数据进行对号入座划分。
 # 加载json文件得出一个字典,然后根据Key值来提取每个文件到相应的文件夹中,(注意去除了不合理数据)
 try:
     for i in range(0,59):
         os.mkdir("./data/train/" + str(i))
 except:
     pass
 file_train = json.load(open("./data/temp/labels/AgriculturalDisease_train_annotations.json","r",encoding="utf-8"))
 file_val = json.load(open("./data/temp/labels/AgriculturalDisease_validation_annotations.json","r",encoding="utf-8"))
 file_list = file_train + file_val
 for file in tqdm(file_list):
     filename = file["image_id"]
     origin_path = "./data/temp/images/" + filename
     ids = file["disease_class"]
     if ids ==  44:
         continue
     if ids == 45:
         continue
     if ids > 45:
         ids = ids -2
     save_path = "./data/train/" + str(ids) + "/"
     shutil.copy(origin_path,save_path)
2.获取增强数据集类的定义
1.采用自定义获取增强数据类,此Dataset类中重新定义了对数据进行数据增强的多种方式,不仅限于pytorch中自带的增强方式。
首先附上自定义的数据增强的函数代码:
方式一,以重新定义重载方法类的方式定义多种增强方式,在dataset类中的get_item方法中的compose中加入自定义的方法,即可调用。
 # 数据增强的多种方式,使用自定义的方法。调用只需在dataloader.py文件中的get_item函数中调用类自身参数
 # transforms,transforms中集合了compose,compose中列出详细所使用的增强方式。
 from __future__ import division
 import cv2
 import numpy as np
 from numpy import random
 import math
 from sklearn.utils import shuffle
 # 常用的增强方式几乎都在这里,只需在compose中列出类名即可
 __all__ = ['Compose','RandomHflip', 'RandomUpperCrop', 'Resize', 'UpperCrop', 'RandomBottomCrop',
             "RandomErasing",'BottomCrop', 'Normalize', 'RandomSwapChannels', 'RandomRotate',
             'RandomHShift',"CenterCrop","RandomVflip",'ExpandBorder', 'RandomResizedCrop',
             'RandomDownCrop', 'DownCrop', 'ResizedCrop',"FixRandomRotate"]
     # 组合
     # “随机翻转”,“随机顶部切割”,“调整大小”,“上切割”,“随机底部切割”、
     # “随机擦除”,“底部切割”,“正则化”,“随机交换频道”,“随机旋转”,
     # “随机HShift”,“中央切割”,“随机Vflip”,“扩展边界”,“随机调整切割”,
     # “随机下降”,“下降切割”, “调整切割”,“固定随机化”。
 # 每个增强方式类需要调用普通方法描述如下:
 def rotate_nobound(image, angle, center=None, scale=1.):
     (h, w) = image.shape[:2]
     # if the center is None, initialize it as the center of
     # the image
     if center is None:
         center = (w // 2, h // 2)
     # perform the rotation
     M = cv2.getRotationMatrix2D(center, angle, scale)
     rotated = cv2.warpAffine(image, M, (w, h))
     return rotated
 def scale_down(src_size, size):
     w, h = size
     sw, sh = src_size
     if sh < h:
         w, h = float(w * sh) / h, sh
     if sw < w:
         w, h = sw, float(h * sw) / w
     return int(w), int(h)
 def fixed_crop(src, x0, y0, w, h, size=None):
     out = src[y0:y0 + h, x0:x0 + w]
     if size is not None and (w, h) != size:
         out = cv2.resize(out, (size[0], size[1]), interpolation=cv2.INTER_CUBIC)
     return out
 # 固定随机旋转
 class FixRandomRotate(object):
     def __init__(self, angles=[0,90,180,270], bound=False):
         self.angles = angles
         self.bound = bound
     def __call__(self,img):
         do_rotate = random.randint(0, 4)
         angle=self.angles[do_rotate]
         if self.bound:
             img = rotate_bound(img, angle)
         else:
             img = rotate_nobound(img, angle)
         return img
 def center_crop(src, size):
     h, w = src.shape[0:2]
     new_w, new_h = scale_down((w, h), size)
     x0 = int((w - new_w) / 2)
     y0 = int((h - new_h) / 2)
     out = fixed_crop(src, x0, y0, new_w, new_h, size)
     return out
 def bottom_crop(src, size):
     h, w = src.shape[0:2]
     new_w, new_h = scale_down((w, h), size)
     x0 = int((w - new_w) / 2)
     y0 = int((h - new_h) * 0.75)
     out = fixed_crop(src, x0, y0, new_w, new_h, size)
     return out
 def rotate_bound(image, angle):
     # grab the dimensions of the image and then determine the
     # center
     h, w = image.shape[:2]
     (cX, cY) = (w // 2, h // 2)
     M = cv2.getRotationMatrix2D((cX, cY), angle, 1.0)
     cos = np.abs(M[0, 0])
     sin = np.abs(M[0, 1])
     # compute the new bounding dimensions of the image
     nW = int((h * sin) + (w * cos))
     nH = int((h * cos) + (w * sin))
     # adjust the rotation matrix to take into account translation
     M[0, 2] += (nW / 2) - cX
     M[1, 2] += (nH / 2) - cY
     rotated = cv2.warpAffine(image, M, (nW, nH))
     return rotated
 # 常用增强方式,以类的方式体现:
 # 将多个transform组合起来使用
 crop切割  filp旋转
 class Compose(object):
     def __init__(self, transforms):
         self.transforms = transforms
     def __call__(self, img):
         for t in self.transforms:
             img = t(img)
         return img
 class RandomRotate(object):
     def __init__(self, angles, bound=False):
         self.angles = angles
         self.bound = bound
     def __call__(self,img):
         do_rotate = random.randint(0, 2)
         if do_rotate:
             angle = np.random.uniform(self.angles[0], self.angles[1])
             if self.bound:
                 img = rotate_bound(img, angle)
             else:
                 img = rotate_nobound(img, angle)
         return img
 class RandomBrightness(object):
     def __init__(self, delta=10):
         assert delta >= 0
         assert delta <= 255
         self.delta = delta
     def __call__(self, image):
         if random.randint(2):
             delta = random.uniform(-self.delta, self.delta)
             image = (image + delta).clip(0.0, 255.0)
             # print('RandomBrightness,delta ',delta)
         return image
 class RandomContrast(object):
     def __init__(self, lower=0.9, upper=1.05):
         self.lower = lower
         self.upper = upper
         assert self.upper >= self.lower, "contrast upper must be >= lower."
         assert self.lower >= 0, "contrast lower must be non-negative."
     # expects float image
     def __call__(self, image):
         if random.randint(2):
             alpha = random.uniform(self.lower, self.upper)
             # print('contrast:', alpha)
             image = (image * alpha).clip(0.0,255.0)
         return image
 class RandomSaturation(object):
     def __init__(self, lower=0.8, upper=1.2):
         self.lower = lower
         self.upper = upper
         assert self.upper >= self.lower, "contrast upper must be >= lower."
         assert self.lower >= 0, "contrast lower must be non-negative."
     def __call__(self, image):
         if random.randint(2):
             alpha = random.uniform(self.lower, self.upper)
             image[:, :, 1] *= alpha
             # print('RandomSaturation,alpha',alpha)
         return image
 class RandomHue(object):
     def __init__(self, delta=18.0):
         assert delta >= 0.0 and delta <= 360.0
         self.delta = delta
     def __call__(self, image):
         if random.randint(2):
             alpha = random.uniform(-self.delta, self.delta)
             image[:, :, 0] += alpha
             image[:, :, 0][image[:, :, 0] > 360.0] -= 360.0
             image[:, :, 0][image[:, :, 0] < 0.0] += 360.0
             # print('RandomHue,alpha:', alpha)
         return image
 class ConvertColor(object):
     def __init__(self, current='BGR', transform='HSV'):
         self.transform = transform
         self.current = current
     def __call__(self, image):
         if self.current == 'BGR' and self.transform == 'HSV':
             image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
         elif self.current == 'HSV' and self.transform == 'BGR':
             image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
         else:
             raise NotImplementedError
         return image
 class RandomSwapChannels(object):
     def __call__(self, img):
         if np.random.randint(2):
             order = np.random.permutation(3)
             return img[:,:,order]
         return img
 class RandomCrop(object):
     def __init__(self, size):
         self.size = size
     def __call__(self, image):
         h, w, _ = image.shape
         new_w, new_h = scale_down((w, h), self.size)
         if w == new_w:
             x0 = 0
         else:
             x0 = random.randint(0, w - new_w)
         if h == new_h:
             y0 = 0
         else:
             y0 = random.randint(0, h - new_h)
         out = fixed_crop(image, x0, y0, new_w, new_h, self.size)
         return out
 class RandomResizedCrop(object):
     def __init__(self, size,scale=(0.49, 1.0), ratio=(1., 1.)):
         self.size = size
         self.scale = scale
         self.ratio = ratio
     def __call__(self,img):
         if random.random() < 0.2:
             return cv2.resize(img,self.size)
         h, w, _ = img.shape
         area = h * w
         d=1
         for attempt in range(10):
             target_area = random.uniform(self.scale[0], self.scale[1]) * area
             aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])
             new_w = int(round(math.sqrt(target_area * aspect_ratio)))
             new_h = int(round(math.sqrt(target_area / aspect_ratio)))
             if random.random() < 0.5:
                 new_h, new_w = new_w, new_h
             if new_w < w and new_h < h:
                 x0 = random.randint(0, w - new_w)
                 y0 = (random.randint(0, h - new_h))//d
                 out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
                 return out
         # Fallback
         return center_crop(img, self.size)
 class DownCrop():
     def __init__(self, size,  select, scale=(0.36,0.81)):
         self.size = size
         self.scale = scale
         self.select = select
     def __call__(self,img, attr_idx):
         if attr_idx not in self.select:
             return img, attr_idx
         if attr_idx == 0:
             self.scale=(0.64,1.0)
         h, w, _ = img.shape
         area = h * w
         s = (self.scale[0]+self.scale[1])/2.0
         target_area = s * area
         new_w = int(round(math.sqrt(target_area)))
         new_h = int(round(math.sqrt(target_area)))
         if new_w < w and new_h < h:
             dw = w-new_w
             x0 = int(0.5*dw)
             y0 = h-new_h
             out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
             return out, attr_idx
         # Fallback
         return center_crop(img, self.size), attr_idx
 class ResizedCrop(object):
     def __init__(self, size, select,scale=(0.64, 1.0), ratio=(3. / 4., 4. / 3.)):
         self.size = size
         self.scale = scale
         self.ratio = ratio
         self.select = select
     def __call__(self,img, attr_idx):
         if attr_idx not in self.select:
             return img, attr_idx
         h, w, _ = img.shape
         area = h * w
         d=1
         if attr_idx == 2:
             self.scale=(0.36,0.81)
             d=2
         if attr_idx == 0:
             self.scale=(0.81,1.0)
         target_area = (self.scale[0]+self.scale[1])/2.0 * area
         # aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])
         new_w = int(round(math.sqrt(target_area)))
         new_h = int(round(math.sqrt(target_area)))
         # if random.random() < 0.5:
         #     new_h, new_w = new_w, new_h
         if new_w < w and new_h < h:
             x0 =  (w - new_w)//2
             y0 = (h - new_h)//d//2
             out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
             # cv2.imshow('{}_img'.format(idx2attr_map[attr_idx]), img)
             # cv2.imshow('{}_crop'.format(idx2attr_map[attr_idx]), out)
             #
             # cv2.waitKey(0)
             return out, attr_idx
         # Fallback
         return center_crop(img, self.size), attr_idx
 class RandomHflip(object):
     def __call__(self, image):
         if random.randint(2):
             return cv2.flip(image, 1)
         else:
             return image
 class RandomVflip(object):
     def __call__(self, image):
         if random.randint(2):
             return cv2.flip(image, 0)
         else:
             return image
 class Hflip(object):
     def __init__(self,doHflip):
         self.doHflip = doHflip
     def __call__(self, image):
         if self.doHflip:
             return cv2.flip(image, 1)
         else:
             return image
 class CenterCrop(object):
     def __init__(self, size):
         self.size = size
     def __call__(self, image):
         return center_crop(image, self.size)
 class UpperCrop():
     def __init__(self, size, scale=(0.09, 0.64)):
         self.size = size
         self.scale = scale
     def __call__(self,img):
         h, w, _ = img.shape
         area = h * w
         s = (self.scale[0]+self.scale[1])/2.0
         target_area = s * area
         new_w = int(round(math.sqrt(target_area)))
         new_h = int(round(math.sqrt(target_area)))
         if new_w < w and new_h < h:
             dw = w-new_w
             x0 = int(0.5*dw)
             y0 = 0
             out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
             return out
         # Fallback
         return center_crop(img, self.size)
 class RandomUpperCrop(object):
     def __init__(self, size, select, scale=(0.09, 0.64), ratio=(3. / 4., 4. / 3.)):
         self.size = size
         self.scale = scale
         self.ratio = ratio
         self.select = select
     def __call__(self,img, attr_idx):
         if random.random() < 0.2:
             return img, attr_idx
         if attr_idx not in self.select:
             return img, attr_idx
         h, w, _ = img.shape
         area = h * w
         for attempt in range(10):
             s = random.uniform(self.scale[0], self.scale[1])
             d = 0.1 + (0.3 - 0.1) / (self.scale[1] - self.scale[0]) * (s - self.scale[0])
             target_area = s * area
             aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])
             new_w = int(round(math.sqrt(target_area * aspect_ratio)))
             new_h = int(round(math.sqrt(target_area / aspect_ratio)))
             # new_w = int(round(math.sqrt(target_area)))
             # new_h = int(round(math.sqrt(target_area)))
             if new_w < w and new_h < h:
                 dw = w-new_w
                 x0 = random.randint(int((0.5-d)*dw), int((0.5+d)*dw)+1)
                 y0 = (random.randint(0, h - new_h))//10
                 out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
                 return out, attr_idx
         # Fallback
         return center_crop(img, self.size), attr_idx
 class RandomDownCrop(object):
     def __init__(self, size, select, scale=(0.36, 0.81), ratio=(3. / 4., 4. / 3.)):
         self.size = size
         self.scale = scale
         self.ratio = ratio
         self.select = select
     def __call__(self,img, attr_idx):
         if random.random() < 0.2:
             return img, attr_idx
         if attr_idx not in self.select:
             return img, attr_idx
         if attr_idx == 0:
             self.scale=(0.64,1.0)
         h, w, _ = img.shape
         area = h * w
         for attempt in range(10):
             s = random.uniform(self.scale[0], self.scale[1])
             d = 0.1 + (0.3 - 0.1) / (self.scale[1] - self.scale[0]) * (s - self.scale[0])
             target_area = s * area
             aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])
             new_w = int(round(math.sqrt(target_area * aspect_ratio)))
             new_h = int(round(math.sqrt(target_area / aspect_ratio)))
             #
             # new_w = int(round(math.sqrt(target_area)))
             # new_h = int(round(math.sqrt(target_area)))
             if new_w < w and new_h < h:
                 dw = w-new_w
                 x0 = random.randint(int((0.5-d)*dw), int((0.5+d)*dw)+1)
                 y0 = (random.randint((h - new_h)*9//10, h - new_h))
                 out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
                 # cv2.imshow('{}_img'.format(idx2attr_map[attr_idx]), img)
                 # cv2.imshow('{}_crop'.format(idx2attr_map[attr_idx]), out)
                 #
                 # cv2.waitKey(0)
                 return out, attr_idx
         # Fallback
         return center_crop(img, self.size), attr_idx
 class RandomHShift(object):
     def __init__(self, select, scale=(0.0, 0.2)):
         self.scale = scale
         self.select = select
     def __call__(self,img, attr_idx):
         if attr_idx not in self.select:
             return img, attr_idx
         do_shift_crop = random.randint(0, 2)
         if do_shift_crop:
             h, w, _ = img.shape
             min_shift = int(w*self.scale[0])
             max_shift = int(w*self.scale[1])
             shift_idx = random.randint(min_shift, max_shift)
             direction = random.randint(0,2)
             if direction:
                 right_part = img[:, -shift_idx:, :]
                 left_part = img[:, :-shift_idx, :]
             else:
                 left_part = img[:, :shift_idx, :]
                 right_part = img[:, shift_idx:, :]
             img = np.concatenate((right_part, left_part), axis=1)
         # Fallback
         return img, attr_idx
 class RandomBottomCrop(object):
     def __init__(self, size, select, scale=(0.4, 0.8)):
         self.size = size
         self.scale = scale
         self.select = select
     def __call__(self,img, attr_idx):
         if attr_idx not in self.select:
             return img, attr_idx
         h, w, _ = img.shape
         area = h * w
         for attempt in range(10):
             s = random.uniform(self.scale[0], self.scale[1])
             d = 0.25 + (0.45 - 0.25) / (self.scale[1] - self.scale[0]) * (s - self.scale[0])
             target_area = s * area
             new_w = int(round(math.sqrt(target_area)))
             new_h = int(round(math.sqrt(target_area)))
             if new_w < w and new_h < h:
                 dw = w-new_w
                 dh = h - new_h
                 x0 = random.randint(int((0.5-d)*dw), min(int((0.5+d)*dw)+1,dw))
                 y0 = (random.randint(max(0,int(0.8*dh)-1), dh))
                 out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
                 return out, attr_idx
         # Fallback
         return bottom_crop(img, self.size), attr_idx
 class BottomCrop():
     def __init__(self, size,  select, scale=(0.4, 0.8)):
         self.size = size
         self.scale = scale
         self.select = select
     def __call__(self,img, attr_idx):
         if attr_idx not in self.select:
             return img, attr_idx
         h, w, _ = img.shape
         area = h * w
         s = (self.scale[0]+self.scale[1])/3.*2.
         target_area = s * area
         new_w = int(round(math.sqrt(target_area)))
         new_h = int(round(math.sqrt(target_area)))
         if new_w < w and new_h < h:
             dw = w-new_w
             dh = h-new_h
             x0 = int(0.5*dw)
             y0 = int(0.9*dh)
             out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
             return out, attr_idx
         # Fallback
         return bottom_crop(img, self.size), attr_idx
 class Resize(object):
     def __init__(self, size, inter=cv2.INTER_CUBIC):
         self.size = size
         self.inter = inter
     def __call__(self, image):
         return cv2.resize(image, (self.size[0], self.size[0]), interpolation=self.inter)
 class ExpandBorder(object):
     def __init__(self,  mode='constant', value=255, size=(336,336), resize=False):
         self.mode = mode
         self.value = value
         self.resize = resize
         self.size = size
     def __call__(self, image):
         h, w, _ = image.shape
         if h > w:
             pad1 = (h-w)//2
             pad2 = h - w - pad1
             if self.mode == 'constant':
                 image = np.pad(image, ((0, 0), (pad1, pad2), (0, 0)),
                                self.mode, constant_values=self.value)
             else:
                 image = np.pad(image,((0,0), (pad1, pad2),(0,0)), self.mode)
         elif h < w:
             pad1 = (w-h)//2
             pad2 = w-h - pad1
             if self.mode == 'constant':
                 image = np.pad(image, ((pad1, pad2),(0, 0), (0, 0)),
                                self.mode,constant_values=self.value)
             else:
                 image = np.pad(image, ((pad1, pad2), (0, 0), (0, 0)),self.mode)
         if self.resize:
             image = cv2.resize(image, (self.size[0], self.size[0]),interpolation=cv2.INTER_LINEAR)
         return image
 class AstypeToInt():
     def __call__(self, image, attr_idx):
         return image.clip(0,255.0).astype(np.uint8), attr_idx
 class AstypeToFloat():
     def __call__(self, image, attr_idx):
         return image.astype(np.float32), attr_idx
 import matplotlib.pyplot as plt
 class Normalize(object):
     def __init__(self,mean, std):
         '''
         :param mean: RGB order
         :param std:  RGB order
         '''
         self.mean = np.array(mean).reshape(3,1,1)
         self.std = np.array(std).reshape(3,1,1)
     def __call__(self, image):
         '''
         :param image:  (H,W,3)  RGB
         :return:
         '''
         # plt.figure(1)
         # plt.imshow(image)
         # plt.show()
         return (image.transpose((2, 0, 1)) / 255. - self.mean) / self.std
 class RandomErasing(object):
     def __init__(self, select,EPSILON=0.5,sl=0.02, sh=0.09, r1=0.3, mean=[0.485, 0.456, 0.406]):
         self.EPSILON = EPSILON
         self.mean = mean
         self.sl = sl
         self.sh = sh
         self.r1 = r1
         self.select = select
     def __call__(self, img,attr_idx):
         if attr_idx not in self.select:
             return img,attr_idx
         if random.uniform(0, 1) > self.EPSILON:
             return img,attr_idx
         for attempt in range(100):
             area = img.shape[1] * img.shape[2]
             target_area = random.uniform(self.sl, self.sh) * area
             aspect_ratio = random.uniform(self.r1, 1 / self.r1)
             h = int(round(math.sqrt(target_area * aspect_ratio)))
             w = int(round(math.sqrt(target_area / aspect_ratio)))
             if w <= img.shape[2] and h <= img.shape[1]:
                 x1 = random.randint(0, img.shape[1] - h)
                 y1 = random.randint(0, img.shape[2] - w)
                 if img.shape[0] == 3:
                     # img[0, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
                     # img[1, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
                     # img[2, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
                     img[0, x1:x1 + h, y1:y1 + w] = self.mean[0]
                     img[1, x1:x1 + h, y1:y1 + w] = self.mean[1]
                     img[2, x1:x1 + h, y1:y1 + w] = self.mean[2]
                     # img[:, x1:x1+h, y1:y1+w] = torch.from_numpy(np.random.rand(3, h, w))
                 else:
                     img[0, x1:x1 + h, y1:y1 + w] = self.mean[1]
                     # img[0, x1:x1+h, y1:y1+w] = torch.from_numpy(np.random.rand(1, h, w))
                 return img,attr_idx
         return img,attr_idx
 if __name__ == '__main__':
     import matplotlib.pyplot as plt
     class FSAug(object):
         def __init__(self):
             self.augment = Compose([
                 AstypeToFloat(),
                 # RandomHShift(scale=(0.,0.2),select=range(8)),
                 # RandomRotate(angles=(-20., 20.), bound=True),
                 ExpandBorder(select=range(8), mode='symmetric'),# symmetric
                 # Resize(size=(336, 336), select=[ 2, 7]),
                 AstypeToInt()
             ])
         def __call__(self, spct,attr_idx):
             return self.augment(spct,attr_idx)
     trans = FSAug()
     img_path = '/media/gserver/data/FashionAI/round2/train/Images/coat_length_labels/0b6b4a2146fc8616a19fcf2026d61d50.jpg'
     img = cv2.cvtColor(cv2.imread(img_path),cv2.COLOR_BGR2RGB)
     img_trans,_ = trans(img,5)
     # img_trans2,_ = trans(img,6)
     plt.figure()
     plt.subplot(221)
     plt.imshow(img)
     plt.subplot(222)
     plt.imshow(img_trans)
     # plt.subplot(223)
     # plt.imshow(img_trans2)
     # plt.imshow(img_trans2)
     plt.show()
方式二: 用于线下增强数据,采用的方法是
- 高斯噪声
 - 亮度变化
 - 左右翻转
 - 上下翻转
 - 色彩抖动
 - 对化
 - 锐度变化
 from PIL import Image,ImageEnhance,ImageFilter,ImageOps import os import shutil import numpy as np import cv2 import random from skimage.util import random_noise from skimage import exposure image_number = 0 raw_path = "./data/train/" new_path = "./aug/train/" # 加高斯噪声 def addNoise(img): ''' 注意:输出的像素是[0,1]之间,所以乘以5得到[0,255]之间 ''' return random_noise(img, mode='gaussian', seed=13, clip=True)*255 def changeLight(img): rate = random.uniform(0.5, 1.5) # print(rate) img = exposure.adjust_gamma(img, rate) #大于1为调暗,小于1为调亮;1.05 return img try: for i in range(59): os.makedirs(new_path + os.sep + str(i)) except: pass for raw_dir_name in range(59): raw_dir_name = str(raw_dir_name) saved_image_path = new_path + raw_dir_name+"/" raw_image_path = raw_path + raw_dir_name+"/" if not os.path.exists(saved_image_path): os.mkdir(saved_image_path) raw_image_file_name = os.listdir(raw_image_path) raw_image_file_path = [] for i in raw_image_file_name: raw_image_file_path.append(raw_image_path+i) for x in raw_image_file_path: img = Image.open(x) cv_image = cv2.imread(x) # 高斯噪声 gau_image = addNoise(cv_image) # 随机改变 light = changeLight(cv_image) light_and_gau = addNoise(light) cv2.imwrite(saved_image_path + "gau_" + os.path.basename(x),gau_image) cv2.imwrite(saved_image_path + "light_" + os.path.basename(x),light) cv2.imwrite(saved_image_path + "gau_light" + os.path.basename(x),light_and_gau) #img = img.resize((800,600)) #1.翻转 img_flip_left_right = img.transpose(Image.FLIP_LEFT_RIGHT) img_flip_top_bottom = img.transpose(Image.FLIP_TOP_BOTTOM) #2.旋转 #img_rotate_90 = img.transpose(Image.ROTATE_90) #img_rotate_180 = img.transpose(Image.ROTATE_180) #img_rotate_270 = img.transpose(Image.ROTATE_270) #img_rotate_90_left = img_flip_left_right.transpose(Image.ROTATE_90) #img_rotate_270_left = img_flip_left_right.transpose(Image.ROTATE_270) #3.亮度 #enh_bri = ImageEnhance.Brightness(img) #brightness = 1.5 #image_brightened = enh_bri.enhance(brightness) #4.色彩 #enh_col = ImageEnhance.Color(img) #color = 1.5 #image_colored = enh_col.enhance(color) #5.对比度 enh_con = ImageEnhance.Contrast(img) contrast = 1.5 image_contrasted = enh_con.enhance(contrast) #6.锐度 #enh_sha = ImageEnhance.Sharpness(img) #sharpness = 3.0 #image_sharped = enh_sha.enhance(sharpness) #保存 img.save(saved_image_path + os.path.basename(x)) img_flip_left_right.save(saved_image_path + "left_right_" + os.path.basename(x)) img_flip_top_bottom.save(saved_image_path + "top_bottom_" + os.path.basename(x)) #img_rotate_90.save(saved_image_path + "rotate_90_" + os.path.basename(x)) #img_rotate_180.save(saved_image_path + "rotate_180_" + os.path.basename(x)) #img_rotate_270.save(saved_image_path + "rotate_270_" + os.path.basename(x)) #img_rotate_90_left.save(saved_image_path + "rotate_90_left_" + os.path.basename(x)) #img_rotate_270_left.save(saved_image_path + "rotate_270_left_" + os.path.basename(x)) #image_brightened.save(saved_image_path + "brighted_" + os.path.basename(x)) #image_colored.save(saved_image_path + "colored_" + os.path.basename(x)) image_contrasted.save(saved_image_path + "contrasted_" + os.path.basename(x)) #image_sharped.save(saved_image_path + "sharped_" + os.path.basename(x)) image_number += 1 print("convert pictur" "es :%s size:%s mode:%s" % (image_number, img.size, img.mode))加载数据的类(自定义继承)
- 与pytorch中的加载数据类差不多,只是多了自己的某些功能。
 from torch.utils.data import Dataset from torchvision import transforms as T from config import config from PIL import Image from itertools import chain from glob import glob from tqdm import tqdm import random import numpy as np import pandas as pd import os import cv2 import torch #1.set random seed random.seed(config.seed) np.random.seed(config.seed) torch.manual_seed(config.seed) torch.cuda.manual_seed_all(config.seed) #2.define dataset class ZiyiDataset(Dataset): def __init__(self,label_list,transforms=None,train=True,test=False): self.test = test self.train = train imgs = [] if self.test: for index,row in label_list.iterrows(): imgs.append((row["filename"])) self.imgs = imgs else: for index,row in label_list.iterrows(): imgs.append((row["filename"],row["label"])) self.imgs = imgs if transforms is None: if self.test or not train: self.transforms = T.Compose([ T.Resize((config.img_weight,config.img_height)), T.ToTensor(), T.Normalize(mean = [0.485,0.456,0.406], std = [0.229,0.224,0.225])]) else: self.transforms = T.Compose([ T.Resize((config.img_weight,config.img_height)), T.RandomRotation(30), T.RandomHorizontalFlip(), T.RandomVerticalFlip(), T.RandomAffine(45), T.ToTensor(), T.Normalize(mean = [0.485,0.456,0.406], std = [0.229,0.224,0.225])]) else: self.transforms = transforms def __getitem__(self,index): if self.test: filename = self.imgs[index] img = Image.open(filename) img = self.transforms(img) return img,filename else: filename,label = self.imgs[index] img = Image.open(filename) img = self.transforms(img) return img,label def __len__(self): return len(self.imgs) def collate_fn(batch): imgs = [] label = [] for sample in batch: imgs.append(sample[0]) label.append(sample[1]) return torch.stack(imgs, 0), \ label def get_files(root,mode): #for test if mode == "test": files = [] for img in os.listdir(root): files.append(root + img) files = pd.DataFrame({"filename":files}) return files elif mode != "test": #for train and val all_data_path,labels = [],[] image_folders = list(map(lambda x:root+x,os.listdir(root))) jpg_image_1 = list(map(lambda x:glob(x+"/*.jpg"),image_folders)) jpg_image_2 = list(map(lambda x:glob(x+"/*.JPG"),image_folders)) all_images = list(chain.from_iterable(jpg_image_1 + jpg_image_2)) print("loading train dataset") for file in tqdm(all_images): all_data_path.append(file) labels.append(int(file.split("/")[-2])) all_files = pd.DataFrame({"filename":all_data_path,"label":labels}) return all_files else: print("check the mode please!")
3.获取模型
获取模型较为简单,单一模型采取pytorch中的预训练模型,添加所需要的层,进行微调然后迁移学习新数据。
 import torchvision
 import torch.nn.functional as F
 from torch import nn
 from config import config
 def generate_model():
     class DenseModel(nn.Module):
         def __init__(self, pretrained_model):
             super(DenseModel, self).__init__()
             self.classifier = nn.Linear(pretrained_model.classifier.in_features, config.num_classes)
             for m in self.modules():
                 if isinstance(m, nn.Conv2d):
                     nn.init.kaiming_normal(m.weight)
                 elif isinstance(m, nn.BatchNorm2d):
                     m.weight.data.fill_(1)
                     m.bias.data.zero_()
                 elif isinstance(m, nn.Linear):
                     m.bias.data.zero_()
             self.features = pretrained_model.features
             self.layer1 = pretrained_model.features._modules['denseblock1']
             self.layer2 = pretrained_model.features._modules['denseblock2']
             self.layer3 = pretrained_model.features._modules['denseblock3']
             self.layer4 = pretrained_model.features._modules['denseblock4']
         def forward(self, x):
             features = self.features(x)
             out = F.relu(features, inplace=True)
             out = F.avg_pool2d(out, kernel_size=8).view(features.size(0), -1)
             out = F.sigmoid(self.classifier(out))
             return out
     return DenseModel(torchvision.models.densenet169(pretrained=True))
 def get_net():
     #return MyModel(torchvision.models.resnet101(pretrained = True))
     model = torchvision.models.resnet50(pretrained = True)
     #for param in model.parameters():
     #    param.requires_grad = False
     # pytorch添加层的方式直接在Model.层名=层具体形式
     model.avgpool = nn.AdaptiveAvgPool2d(1)
     model.fc = nn.Linear(2048,config.num_classes)  #添加全连接层以作分类任务,num_classes为分类个数
     return model
4.开始训练
 import os
 import random
 import time
 import json
 import torch
 import torchvision
 import numpy as np
 import pandas as pd
 import warnings
 from datetime import datetime
 from torch import nn,optim
 from config import config
 from collections import OrderedDict
 from torch.autograd import Variable
 from torch.utils.data import DataLoader
 from dataset.dataloader import *
 from sklearn.model_selection import train_test_split,StratifiedKFold
 from timeit import default_timer as timer
 from models.model import *
 from utils import *
 #1. 设置随机种子 and cudnn performance
 random.seed(config.seed)
 np.random.seed(config.seed)
 torch.manual_seed(config.seed)
 torch.cuda.manual_seed_all(config.seed)
 os.environ["CUDA_VISIBLE_DEVICES"] = config.gpus
 torch.backends.cudnn.benchmark = True
 warnings.filterwarnings('ignore')
 #2. 评估函数,通过Losses,topk的不断更新来评估模型
 def evaluate(val_loader,model,criterion):
     #2.1 AverageMeter类是Computes and stores the average and current value
     # 创建三个其对象,以用于评估
     losses = AverageMeter()
     top1 = AverageMeter()
     top2 = AverageMeter()
     #2.2 开启评估模式 and confirm model has been transfered to cuda
     model.cuda()
     model.eval()
     with torch.no_grad():
         for i,(input,target) in enumerate(val_loader):
             input = Variable(input).cuda()
             target = Variable(torch.from_numpy(np.array(target)).long()).cuda()
             #target = Variable(target).cuda()
             #2.2.1 compute output
             output = model(input)
             loss = criterion(output,target)
             #2.2.2 measure accuracy and record loss
             precision1,precision2 = accuracy(output,target,topk=(1,2))
             losses.update(loss.item(),input.size(0))
             top1.update(precision1[0],input.size(0))
             top2.update(precision2[0],input.size(0))
     return [losses.avg,top1.avg,top2.avg]
 #3. test model on public dataset and save the probability matrix
 def test(test_loader,model,folds):
     #3.1 confirm the model converted to cuda
     # 得出的结果是概率,再用softmax得出最终分类结果
     csv_map = OrderedDict({"filename":[],"probability":[]})
     model.cuda()
     model.eval()
     with open("./submit/baseline.json","w",encoding="utf-8") as f :
         submit_results = []
         for i,(input,filepath) in enumerate(tqdm(test_loader)):
             # filepath??????
             # 通过模型得到输出概率结果,再用softmax得出预测结果,写入文件。
             #3.2 change everything to cuda and get only basename
             filepath = [os.path.basename(x) for x in filepath]
             with torch.no_grad():
                 image_var = Variable(input).cuda()
                 #3.3.output
                 #print(filepath)
                 #print(input,input.shape)
                 y_pred = model(image_var)
                 #print(y_pred.shape)
                 smax = nn.Softmax(1)
                 smax_out = smax(y_pred)
             #3.4 save probability to csv files
             csv_map["filename"].extend(filepath)
             for output in smax_out:
                 prob = ";".join([str(i) for i in output.data.tolist()])
                 csv_map["probability"].append(prob)
         result = pd.DataFrame(csv_map)
         result["probability"] = result["probability"].map(lambda x : [float(i) for i in x.split(";")])
         for index, row in result.iterrows():
             # 因为44,45类删除,所以预测结果加2
             pred_label = np.argmax(row['probability'])
             if pred_label > 43:
                 pred_label = pred_label + 2
             submit_results.append({"image_id":row['filename'],"disease_class":pred_label})
         json.dump(submit_results,f,ensure_ascii=False,cls = MyEncoder)
 #4. more details to build main function
 def main():
     fold = 0
     #4.1 mkdirs
     if not os.path.exists(config.submit):
         os.mkdir(config.submit)
     if not os.path.exists(config.weights):
         os.mkdir(config.weights)
     if not os.path.exists(config.best_models):
         os.mkdir(config.best_models)
     if not os.path.exists(config.logs):
         os.mkdir(config.logs)
     if not os.path.exists(config.weights + config.model_name + os.sep +str(fold) + os.sep):
         os.makedirs(config.weights + config.model_name + os.sep +str(fold) + os.sep)
     if not os.path.exists(config.best_models + config.model_name + os.sep +str(fold) + os.sep):
         os.makedirs(config.best_models + config.model_name + os.sep +str(fold) + os.sep)
     #4.2 get model and optimizer
     model = get_net()
     #model = torch.nn.DataParallel(model)
     model.cuda()
     #optimizer = optim.SGD(model.parameters(),lr = config.lr,momentum=0.9,weight_decay=config.weight_decay)
     optimizer = optim.Adam(model.parameters(),lr = config.lr,amsgrad=True,weight_decay=config.weight_decay)
     criterion = nn.CrossEntropyLoss().cuda()
     #criterion = FocalLoss().cuda()
     log = Logger()
     log.open(config.logs + "log_train.txt",mode="a")
     log.write("\n----------------------------------------------- [START %s] %s\n\n" % (datetime.now().strftime('%Y-%m-%d %H:%M:%S'), '-' * 51))
     #4.3 some parameters for  K-fold and restart model
     start_epoch = 0
     best_precision1 = 0
     best_precision_save = 0
     resume = False
     #4.4 restart the training process
     if resume:
         checkpoint = torch.load(config.best_models + str(fold) + "/model_best.pth.tar")
         start_epoch = checkpoint["epoch"]
         fold = checkpoint["fold"]
         best_precision1 = checkpoint["best_precision1"]
         model.load_state_dict(checkpoint["state_dict"])
         optimizer.load_state_dict(checkpoint["optimizer"])
     #4.5 get files and split for K-fold dataset
     #4.5.1 read files
     train_ = get_files(config.train_data,"train")
     #val_data_list = get_files(config.val_data,"val")
     test_files = get_files(config.test_data,"test")
     """
     #4.5.2 split
     split_fold = StratifiedKFold(n_splits=3)
     folds_indexes = split_fold.split(X=origin_files["filename"],y=origin_files["label"])
     folds_indexes = np.array(list(folds_indexes))
     fold_index = folds_indexes[fold]
     #4.5.3 using fold index to split for train data and val data
     train_data_list = pd.concat([origin_files["filename"][fold_index[0]],origin_files["label"][fold_index[0]]],axis=1)
     val_data_list = pd.concat([origin_files["filename"][fold_index[1]],origin_files["label"][fold_index[1]]],axis=1)
     """
     train_data_list,val_data_list = train_test_split(train_,test_size = 0.15,stratify=train_["label"])
     #4.5.4 load dataset
     train_dataloader = DataLoader(ZiyiDataset(train_data_list),batch_size=config.batch_size,shuffle=True,collate_fn=collate_fn,pin_memory=True)
     val_dataloader = DataLoader(ZiyiDataset(val_data_list,train=False),batch_size=config.batch_size,shuffle=True,collate_fn=collate_fn,pin_memory=False)
     test_dataloader = DataLoader(ZiyiDataset(test_files,test=True),batch_size=1,shuffle=False,pin_memory=False)
     #scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,"max",verbose=1,patience=3)
     scheduler =  optim.lr_scheduler.StepLR(optimizer,step_size = 10,gamma=0.1)
     # optim.lr_scheduler 提供了基于多种epoch数目调整学习率的方法
     # step_size(整数类型): 调整学习率的步长,每过step_size次,更新一次学习率
     # gamma(float 类型):学习率下降的乘数因子
     #4.5.5.1 define metrics
     train_losses = AverageMeter()
     train_top1 = AverageMeter()
     train_top2 = AverageMeter()
     valid_loss = [np.inf,0,0]
     model.train()
     #logs
     log.write('** start training here! **\n')
     log.write('                           |------------ VALID -------------|----------- TRAIN -------------|------Accuracy------|------------|\n')
     log.write('lr       iter     epoch    | loss   top-1  top-2            | loss   top-1  top-2           |    Current Best    | time       |\n')
     log.write('-------------------------------------------------------------------------------------------------------------------------------\n')
     #4.5.5 train
     start = timer()
     for epoch in range(start_epoch,config.epochs):
         # 一个epoch为所有数据迭代一次进入模型拟合的过程,其中又分为batch_size来分批次进行
         scheduler.step(epoch)
         # train
         #global iter
         for iter,(input,target) in enumerate(train_dataloader):
             #4.5.5 switch to continue train process
             model.train()
             input = Variable(input).cuda()
             target = Variable(torch.from_numpy(np.array(target)).long()).cuda()
             #target = Variable(target).cuda()
             output = model(input)
             loss = criterion(output,target)
             precision1_train,precision2_train = accuracy(output,target,topk=(1,2))
             train_losses.update(loss.item(),input.size(0))
             train_top1.update(precision1_train[0],input.size(0))
             train_top2.update(precision2_train[0],input.size(0))
             #backward
             optimizer.zero_grad()
             loss.backward()
             optimizer.step()
             lr = get_learning_rate(optimizer)
             print('\r',end='',flush=True)
             print('%0.4f %5.1f %6.1f        | %0.3f  %0.3f  %0.3f         | %0.3f  %0.3f  %0.3f         |         %s         | %s' % (\
                          lr, iter/len(train_dataloader) + epoch, epoch,
                          valid_loss[0], valid_loss[1], valid_loss[2],
                          train_losses.avg, train_top1.avg, train_top2.avg,str(best_precision_save),
                          time_to_str((timer() - start),'min'))
             , end='',flush=True)
         #evaluate
         lr = get_learning_rate(optimizer)
         #evaluate every half epoch
         valid_loss = evaluate(val_dataloader,model,criterion)
         is_best = valid_loss[1] > best_precision1
         best_precision1 = max(valid_loss[1],best_precision1)
         try:
             best_precision_save = best_precision1.cpu().data.numpy()
         except:
             pass
         save_checkpoint({
                     "epoch":epoch + 1,
                     "model_name":config.model_name,
                     "state_dict":model.state_dict(),
                     "best_precision1":best_precision1,
                     "optimizer":optimizer.state_dict(),
                     "fold":fold,
                     "valid_loss":valid_loss,
         },is_best,fold)
         #adjust learning rate
         #scheduler.step(valid_loss[1])
         print("\r",end="",flush=True)
         log.write('%0.4f %5.1f %6.1f        | %0.3f  %0.3f  %0.3f          | %0.3f  %0.3f  %0.3f         |         %s         | %s' % (\
                         lr, 0 + epoch, epoch,
                         valid_loss[0], valid_loss[1], valid_loss[2],
                         train_losses.avg,    train_top1.avg,    train_top2.avg, str(best_precision_save),
                         time_to_str((timer() - start),'min'))
                 )
         log.write('\n')
         time.sleep(0.01)
     best_model = torch.load(config.best_models + os.sep+config.model_name+os.sep+ str(fold) +os.sep+ 'model_best.pth.tar')
     model.load_state_dict(best_model["state_dict"])
     test(test_dataloader,model,fold)
 if __name__ =="__main__":
     main()
使用Pytorch进行图像分类,AI challenger 农作物病害分类竞赛源码解读的更多相关文章
- [源码解读] ResNet源码解读(pytorch)
		
自己看读完pytorch封装的源码后,自己又重新写了一边(模仿其书写格式), 一些问题在代码中说明. import torch import torchvision import argparse i ...
 - PyTorch源码解读之torchvision.transforms(转)
		
原文地址:https://blog.csdn.net/u014380165/article/details/79167753 版权声明:本文为博主原创文章,未经博主允许不得转载. https://bl ...
 - PyTorch源码解读之torchvision.models(转)
		
原文地址:https://blog.csdn.net/u014380165/article/details/79119664 PyTorch框架中有一个非常重要且好用的包:torchvision,该包 ...
 - PyTorch源码解读之torch.utils.data.DataLoader(转)
		
原文链接 https://blog.csdn.net/u014380165/article/details/79058479 写得特别好!最近正好在学习pytorch,学习一下! PyTorch中数据 ...
 - pytorch bert 源码解读
		
https://daiwk.github.io/posts/nlp-bert.html 目录 概述 BERT 模型架构 Input Representation Pre-training Tasks ...
 - [源码解析] PyTorch 分布式(1) --- 数据加载之DistributedSampler
		
[源码解析] PyTorch 分布式(1) --- 数据加载之DistributedSampler 目录 [源码解析] PyTorch 分布式(1) --- 数据加载之DistributedSampl ...
 - [源码解析] PyTorch 分布式(2) --- 数据加载之DataLoader
		
[源码解析] PyTorch 分布式(2) --- 数据加载之DataLoader 目录 [源码解析] PyTorch 分布式(2) --- 数据加载之DataLoader 0x00 摘要 0x01 ...
 - [源码解析] PyTorch 分布式之弹性训练(1) --- 总体思路
		
[源码解析] PyTorch 分布式之弹性训练(1) --- 总体思路 目录 [源码解析] PyTorch 分布式之弹性训练(1) --- 总体思路 0x00 摘要 0x01 痛点 0x02 难点 0 ...
 - [源码解析] PyTorch 分布式之弹性训练(6)---监控/容错
		
[源码解析] PyTorch 分布式之弹性训练(6)---监控/容错 目录 [源码解析] PyTorch 分布式之弹性训练(6)---监控/容错 0x00 摘要 0x01 总体逻辑 1.1 Node集 ...
 
随机推荐
- [No0000110]Git9/9-自定义Git
			
在安装Git一节中,我们已经配置了user.name和user.email,实际上,Git还有很多可配置项. 比如,让Git显示颜色,会让命令输出看起来更醒目: $ git config --glob ...
 - 【单调栈】hdu 6319 杭电多校Problem A. Ascending Rating
			
http://acm.hdu.edu.cn/showproblem.php?pid=6319 从后往前更新,维护一个递减单调栈(队列) 最近很多题都是单调栈... #define _CRT_SECUR ...
 - 【绿书】 模拟,rep大坑
			
https://vjudge.net/contest/229603#problem/B 绿书题 大模拟,绿书上用了个比较麻烦的输入,其实只要getchar()!='0'就行 坑: rep(i,0,s. ...
 - mysql-5.7免安装版本设置
			
mysql-5.7.22 免安装版本设置(Windows7) 一.在Mysql官网下载Mysql-5.7.22的ZIP文件 下载链接为:https://dev.mysql.com/downloads ...
 - Java之旅_面向对象_重写和重载
			
参考并摘自:http://www.runoob.com/java/java-override-overload.html 重写(Override) 子类对父类(允许访问的)方法的实现过程进行重新编写, ...
 - Orchard Core 模块化
			
在上一篇文章谈到如何搭好一个基础的Orchard Core项目. 今天要尝试Orchard Core的模块化. 我自己的理解:一个系统可以分成一个个模块,这一个个模块是由一个个类库去实现的. 首先,在 ...
 - python全栈开发day12
			
列表 创建列表: 基本操作: 索引 切片 追加 删除 长度 切片 循环 包含 #######################列表list类中提供的方法######################## ...
 - net use共享文件访问
			
NET USE "\\xxx.xxx.xxx.xxx\vms\Application Files" "password123" /USER:"ap\1 ...
 - (4.1)mysql备份还原——mysql常见故障
			
(4.1)mysql备份还原——mysql常见故障 1.常见故障类型 在数据库环境中,常见故障类型: 语句失败,用户进程失败,用户错误 实例失败,介质故障,网络故障 其中最严重的故障主要是用户错误和介 ...
 - SegmentedControlIOS使用
			
代码: import React, { Component } from 'react'; import { AppRegistry, StyleSheet, Text, SegmentedContr ...